一个人的旅行
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 24740 Accepted Submission(s): 8574
Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
6 2 3 1 3 5 1 4 7 2 8 12 3 8 4 4 9 12 9 10 2 1 2 8 9 10
Sample Output
9
# include<cstdio>
# include<cstring>
# include<algorithm>
# define MAX 1000 + 10
# define INF 0x3f3f3f3f
int t, s, d;
int map[MAX][MAX];
bool tree[MAX];
int low[MAX];
void f()
{
int i, j;
memset(tree, 0, sizeof(tree));
for(i = 0; i <= 1000; i++)
low[i] = INF;
int next;
for(i = 0; i <= 1000; i++)
{
low[i] = map[0][i];
}
low[0] = 0;
tree[0] = 1;
for(i = 0; i < 1000; i++)
{
int m = INF;
for(j = 0; j <= 1000; j++)
{
if(!tree[j] && low[j] < m)
{
m = low[j];
next = j;
}
}
tree[next] = 1;
low[next] = m;
for(j = 0; j <= 1000; j++)
{
if(!tree[j] && low[j] > low[next] + map[next][j])
low[j] = low[next] + map[next][j];
}
}
}
int main()
{
int a, b, s, time, city;
while(scanf("%d%d%d",&t,&s,&d)!=EOF)
{
for(int i = 0; i <= 1000; i++)
{
for(int j = 0; j <= 1000; j++)
map[i][j] = map[j][i] = INF;
}
for(int i = 1; i <= t; i++)
{
scanf("%d%d%d",&a,&b,&time);
if(time < map[a][b])
{
map[a][b] = time;
map[b][a] = time;
}
}
for(int i = 1; i <= s; i++)
{
scanf("%d",&city);
map[0][city] = 0;//将村庄与家离的距离赋值为0
}
f();
int m1 = INF;
for(int i = 1; i <= d; i++)
{
scanf("%d",&s);
if(low[s] < m1)
m1 = low[s];
}
printf("%d\n",m1);
}
return 0;
}
该算法的主要步骤:
1.将记录源点与其他各点之间距离的数组赋值为无穷大
2.将上述数组的第一位赋值为0
3.从源点找到离他最近的点
4.松弛(不断的将权值变小)
5.重复3.4步骤