古代政府机构及官员品级

我国古代官员职位各历史阶段不同,分类繁多。

中央官制历史沿袭

战国时,各国国君之下设相与将,分掌文武权柄。我们熟知的例子有,赵慧文王以蔺相如为相,廉颇为将。但同时期楚国最高长官为令尹,武官是上柱国,与其他国官职不同。

秦朝皇帝之下设丞相府、太尉府、御史大夫寺组成的中枢机构。丞相秉承皇帝旨意辅理国政,太尉掌管全国军事,御史大夫是皇帝的秘书长,兼管监察。秦国的丞相官位最高,尊称为相国,也称为宰相。

汉初沿袭秦制,汉武帝以后丞相地位虽在,权力却逐渐缩小。西汉末丞相改成大司徒,太尉改成大司马,御史大夫改成大司空,号称三公,且都是宰相。但是到东汉光武帝时,三公权力变小,台阁反而成了实际上的宰相府。

这里的台阁指尚书机构尚书台。后世称尚书省。首长是尚书令,副职是尚书仆射。后来由于尚书省权势太大,又设中书省、门下省三省分职制度。

中书省取旨,门下省审核,尚书省执行。

唐代认为中书令和侍中的官位太高,所以此官不轻易授人。常常给他官员加“参与朝政”、“参与政事”之类的名义,以执掌宰相之职。

宋代中央是中书和枢密院,分掌文武,称二府。而辽代的中枢机构是南北宰相府,各设左右宰相。

明朝废中书省,皇帝亲理国政,翰林院官员加殿阁大学士辅政,号称辅臣。首席辅臣有元辅、首辅之称。

清沿明制,到雍正时成立军机处,大学士也就没什么职权了

九卿:

九卿是自秦汉时中央的行政长官。

一、奉常,后称太常。掌宗庙礼仪。

二、郎中令后称光禄勋。管宫廷侍卫。

三、卫尉,管宫门近卫军。

四、太仆,管皇帝车马。

五、廷尉,汉时又称大理,是最高的法官。

六、典客,后称太行令、大鸿胪,管理少数民族来朝事宜。

七、宗正,管理皇族事务。

八、治粟内史,后称大农令、大司农,管租税赋役。

九、少府,管宫廷总务。

以上就是后世称的九卿,九卿之中廷尉、典客和治粟内史管的是政务,其余六卿管的是皇帝私人事务。

九卿之外还有掌管京师治安的中尉,后称执金吾。以及掌管营建宫室的将作少府,后称将作大匠等等。

尚书本是九卿中少府的属官。后发展为尚书台后,事物增多,于是分曹治事。每曹设尚书一人。到隋代确定为:吏、民、礼、兵、刑、工六部。唐代因唐太宗避讳改民部为户部。

六部:

一、吏部,掌管官吏的任免、审查、考绩、升降等。

二、户部 ,掌管土地、户口、赋税、财政等。

三、礼部,掌管典礼、科举、学校等。

四、兵部,掌管全国军政。

五、刑部,掌刑法、狱讼等。

六、工部,掌管工程、营造、屯田、水利等。

各部首长称尚书,副首长称为侍郎。六部成立,九卿的职权后面渐渐变小,有的直接裁撤。

史官

周代太史,掌文史星历兼管国家图书。秦汉时太史、太卜、太祝等官归奉常领导。魏晋南北朝设专职史官,称著作朗。唐代设史馆,以他官兼任史馆修撰,由宰相监修国史。宋代史馆称为国史实录馆,有修撰、编修、检讨等官。明代史官并入翰林院。

武官

春秋时有将军称号。战国有大将军称号,后来有左右前后将军,秦汉沿置。汉代还有骠骑将军,车骑将军,卫将军。魏晋以后将军名目繁多。

地方官制

春秋时地方行政单位有邑县。邑县的长官,鲁国卫国称宰,晋国称大夫,楚国称令尹。

战国时有郡,有县。郡的长官为守,掌军事为主。县的长官为令,掌民政为主。

秦汉万户以上的县,长官称令。不及万户的县,长官称长。县丞助理县政,县尉掌管治安。

隋唐县的长官统称令。宋代派中央官员出掌县政则称为“知某某县事”, 简称知县。明清沿用知县之称。元代则称为县尹。

品阶勋爵

古代把职官分为若干等级。汉代以俸禄多寡作为官位高低的标志。曹魏时职官分九品,一品最高,九品最低。隋唐时,九品又分正从,自正四品起,每品又分上下两阶,共三十级。明清加以简化,九品只分正从,共十八级。

隋代把有职务的官称为职事官,没有职务的官称为散官。到唐代把前代散官官号加以整理补充,重新规定品级,作为标志官员身份级别的称号称阶,即阶官。

唐代采取某些散官的官号,略加补充作为酬赏军功的勋号,称勋,即勋官。 上柱国、柱国、上护军、护军、轻车都尉等,共十二级。

周代封爵:公侯伯子男

汉代实际封爵的只有王侯。皇子封王相当于先秦的诸侯,所以称诸侯王。汉初异姓也封王,异姓受封者统称列侯。

内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值