Backtrader中文文档---软件使用介绍

backtrader中文文档

<文档由 BackTrader.cn 聘请专业人员进行翻译,转载请注明出处>
本中文文档来自 网站 BackTrader.cn

Backtrader 是一个基于 Python 的回测交易开发框架,使用它可以方便的编写技术指标和交易策略。

本人录制的教学视频,请大家多多指教 ,跟着实际上手学习一遍更有效果 《从编程小白到量化宗师之路C02—BackTrader基础》https://edu.csdn.net/course/detail/24721

主要功能

  1. 支持以下平台的实时价格数据和实时交易 :
  2. 盈透证券 (需要安装 IbPy 和 pytz)
    
  3. 可视化图表Visual Chart (需要安装 comtypes 和 pytz,另外comtypes 需要在官方的基础上做一些修改)
    
  4. Oanda (需要安装 oandapy)
    
  5. 来自 csv 文件的数据、网络在线数据或来自 pandas 和 blaze 的数据
  6. 数据处理器(例如可以将日线数据拆分,模拟日内数据)
  7. 支持多数据源和多策略
  8. 多个时间窗口
  9. 集成重采样和重放
  10. 分步回测或一次性回测 (策略调优除外)
  11. 大量技术指标
  12. 支持TA-Lib组件
  13. 轻松开发自定义指标
  14. 分析评价指标(如:时间周期收益、夏普比率、SQN),输出可用于 pyfolio 的结果
  15. 灵活定义手续费逻辑
  16. 支持 市价单、周期结束单 (如以一分钟、一小时结束后价格成交)、限价单、止损单 和 止损现价单 ,还支持交易滑点和期货复权
  17. 绘图 (需要安装 matplotlib)

本框架主要有两个设计目标

1 便于使用
2 第一条
------基于Miyagi先生的空手道(Kid)规则。

运行此回测框架的基础知识

创建一个策略

  1. 确定技术指标的参数(如均线周期数)
  2. 在策略中添加框架自带的 Indicators 技术指标
  3. 编写买入和卖出的逻辑代码

或者

  1. 编写你自己的 做多 / 做空 逻辑代码

然后

  1. 创建一个Cerebro引擎

    第一步

    2 加入刚才编写的策略

    或者

    1. 加入信号 Signals (算是一种简化版的策略)

    第二步

  2. 加载和加入价格数据

  3. 运行 cerebro.run() 进行回测

  4. 绘制 cerebro.plot() 执行的可视化结果

该平台可以高度自定义
我们希望您喜欢这个有用且有趣的平台。

已标记关键词 清除标记
《从编程小白到量化宗师之路》系列课程是一套综合性实战课程,涵盖股票,期货,虚拟货币等的交易方法和策略手段。 《基于BackTrader开发一套WorkForward前向分析框架》是本系列的第二个中级课程。课程宗旨是缩短个人或小型投资者与大型机构投资者之间的的差距。 目前市场上的所有量化策略编写系统,都是从获取一段时间的数据开始,利用指标或者各种模型,进行订单的买卖操作,直到跑完这段时间的数据,运行出结果,并给出各种各样的统计分析,就结束了!?然而实际上,这远没有结束,我们就以指标为例,不同时间不同的行情,指标的效果有很大的差别,更别说不同的年份有不同的行情,只使用一段时间测试怎么足够? 一次性用所有数据,又是一种极端过拟合,更何况,你不能使用2019年测试好的策略,用在2018年之前的任何时间,这些限制,正是金融时间序列数据的不同之处。 为了解决这个问题,就应该使用WorkForward前向分析,也就是通常意义上的“边走边看,走一步看一步”。这本应该是最基础的功能,然而市面上大多数的量化分析系统,完全没有提到或者提供这项功能,让初步入门的量化学习者还要自己组装这一基础功能。 本课程基于backtrader,实现了一个默认支持workforward分析的框架,用户只需要设定需要的产品数据,比如股票和期货,然后设定训练时间,测试时间,预热时间(课程会讲到),编写策略后, 就可以运行WorkForward前向分析功能。用户以后只需要专注于策略编写,大大减轻了使用量化交易系统的负担。 课程内容从讲解机器学习中用到的交叉验证和为什么金融时序要使用前向分析(WorkForward)开始, 详细讲解了前向分析框架的每一个函数,每一个参数的用途,并使用边实际运行代码边讲解的方法,通透的讲述了前向分析框架使用到的各个部分,为同学们透彻理解前向分析框架的代码提供了十分方便的途径。  
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页