CF - 463D LIS + 思维

题意:

题意很简单,给出m个1到n的排列,求出m个序列的最长公共子序列。

思路:

刚看这道题很容易以为是求LCS,但是并没有进展。其实这里,需要用另外一种方式表示两个排列相等。两个排列相等,当且仅当对于任意一个排列中的数x,y,如果在第一个排列中pos[x]<pos[y],其中pos为位置,那么在另一个排列中也要有pos[x]<pos[y],这是求解本题的关键。
有了上面的思路,我们只要在第一个排列中找到一个最长的子序列,满足子序列中的任意两个元素在m个排列中的相对位置都相等。这样就可以通过预处理,得到所有元素的之间相对位置相等是否成立的after数组,也就是after[i][j]如果为1则表示在m个序列中,数字i始终在数字j的前面,这样利用类似LIS的方法对第一个排列求最长的满足要求的子序列即可。

代码:

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 1005;

int a[7][MAXN], pos[7][MAXN], dp[MAXN];
bool after[MAXN][MAXN];

int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            scanf("%d", &a[i][j]);
            pos[i][a[i][j]] = j;
        }
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            bool flag = true;
            for (int k = 1; k <= m; k++)
                if (pos[k][i] > pos[k][j]) {
                    flag = false;
                    break;
                }
            after[i][j] = flag;
        }
    }
    int ans = 1;
    for (int i = 1; i <= n; i++) {
        dp[i] = 1;
        for (int j = 1; j < i; j++) {
            if (after[a[1][j]][a[1][i]])
                dp[i] = max(dp[i], dp[j] + 1);
            ans = max(ans, dp[i]);
        }
    }
    printf("%d\n", ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值