题意:
1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。
Input
输入N(1<= N <= 1000)
Output
输出幸运号码的数量 Mod 10^9 + 7
Input示例
1
Output示例
9
思路:
跟计数有关的dp,跟背包思路差不多,dp[i][j]表示到第i位为止目前数位总和是j的情况数,然后自然状态转移方程就出来了:
dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % MOD;
需要注意的是,这个dp状态的定义是包括数位上有前导零的,所以最后求解的时候要注意,左半边的数第一位要枚举i从1到9,然后剩下的状态是dp[n-1][j-i],与之匹配的右半边不需要考虑前导零,状态就是dp[i][j],根据乘法原理,两者相乘。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1005;
const ll MOD = 1e9 + 7;
ll dp[MAXN][MAXN * 9];
int main() {
dp[0][0] = 1;
for (int i = 1; i <= 1000; i++)
for (int k = 0; k < 10; k++)
for (int j = k; j <= 9000; j++)
dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % MOD;
int n;
scanf("%d", &n);
ll ans = 0;
for (int i = 1; i < 10; i++) {
for (int j = i; j <= 9000; j++) {
ans = (ans + dp[n - 1][j - i] * dp[n][j] % MOD) % MOD;
}
}
printf("%I64d\n", ans);
return 0;
}