题意:
lyk拥有一个区间。
它规定一个区间的价值为这个区间中所有数and起来的值与这个区间所有数or起来的值的乘积。
例如3个数2,3,6。它们and起来的值为2,or起来的值为7,这个区间对答案的贡献为2*7=14。
现在lyk有一个n个数的序列,它想知道所有n*(n+1)/2个区间的贡献的和对1000000007取模后的结果是多少。
例如当这个序列为{3,4,5}时,那么区间[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]的贡献分别为9,0,0,16,20,25。
Input
第一行一个数n(1<=n<=100000)。 接下来一行n个数ai,表示这n个数(0<=ai<=10^9)。
Output
一行表示答案。
Input示例
3 3 4 5
Output示例
70
思路:
完全没思路,看网上题解的。
分治,这方面能力还是弱。
对于一段区间[l,r],求出中点mid,然后递归解决[l,mid-1]和[mid,r]的子问题,还有就是题目所要求的区间左端点在[l,mid-1],右端点在[mid,r]的情况,这里其实就是在[l,mid-1]中枚举左端点,然后在[mid,r]中枚举右端点。这里关键要注意到,在求[mid,r]内的and前缀和以及or前缀和会发现大部分的值都是相同的,因为1e9的二进制位数只有大约log(1e9)位,这样只要把[mid,r]区间的前缀和的值压缩一下,数值相同的一段看作一个数,并把这段长度储存在cnt数组中,这样前缀和长度不会超过log(1e9)。这样再对[l,mid-1]区间遍历一遍,对每个位置再暴力扫一遍[mid,r]的前缀和,复杂度是O(n*logn)。这样分治,最后总复杂度是O(nlognlogn)。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const ll MOD = 1e9 + 7;
ll ans;
ll a[MAXN], cnt[MAXN], OR[MAXN], AND[MAXN];
void solve(int l, int r) {
if (l == r) return;
int mid = (l + r + 1) >> 1;
int pos = mid;
OR[pos] = AND[pos] = a[mid];
cnt[pos] = 1;
for (int i = mid + 1; i <= r; i++) {
if (OR[pos] != (OR[pos] | a[i]) || AND[pos] != (AND[pos] & a[i])) { // 当前and(or)前缀和与前一个and(or)前缀和不一致。
++pos;
OR[pos] = OR[pos - 1] | a[i];
AND[pos] = AND[pos - 1] & a[i];
cnt[pos] = 1;
}
else ++cnt[pos];
}
ll resor = a[mid - 1], resand = a[mid - 1];
for (int i = mid - 1; i >= l; i--) {
resor |= a[i];
resand &= a[i];
for (int j = mid; j <= pos; j++) {
ans = (ans + (resor | OR[j]) * (resand & AND[j]) % MOD * cnt[j] % MOD) % MOD;
}
}
solve(l, mid - 1);
solve(mid, r);
}
int main() {
int n;
scanf("%d", &n);
ans = 0;
for (int i = 1; i <= n; i++) {
scanf("%I64d", &a[i]);
ans = (ans + a[i] * a[i] % MOD) % MOD;
}
solve(1, n);
printf("%I64d\n", ans);
return 0;
}