51Nod - 1522 区间dp

题意:

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1522


思路:

很好的区间dp。
从1开始填起,两个1能存在的位置分别是1和2,1和2*n,2*n-1和2*n。根据每种不同的填法,就可以得到不同区间,这时候问题就变成了在下一个区间从2开始填起。
可以发现对于一个区间[l,r],当前要填x,我们有三种填当前数的方案,根据这三种方案,就可以递归得到更小区间的子问题。最后最小的问题一定是两个相邻的位置,填上最大的数n。
这样就可以想到区间dp,dp[i][j]是区间[i,j]的方案数,那么状态转移方程是:
dp[i][j] = dp[i + 2][j] + dp[i][j - 2] + dp[i + 1][j - 1];
但是题目还有要求满足的条件,很显然,按照这样的填法,后得到子问题的区间里的数一定比之前填的要大,所以每次状态转移的时候,都要判断k个条件是否满足,check(l,r,p,q)表示[l,r]内的数要大于外面的数,且位置p的数要等于位置q的数。
dp很好写,判断条件比较烦。


代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 105;

struct node {
    int cmp, x, y;
} a[MAXN];

int n, k;
char s[3][3];

int getCmp(char s[]) {
    if (strcmp(s, "=") == 0) return 1;
    if (strcmp(s, ">") == 0) return 2;
    if (strcmp(s, "<") == 0) return 3;
    if (strcmp(s, ">=") == 0) return 4;
    return 5;
}

bool check(int l, int r, int p, int q) {
    for (int i = 1; i <= k; i++) {
        int cmp = a[i].cmp, x = a[i].x, y = a[i].y;
        bool tx = (x >= l && x <= r), ty = (y >= l && y <= r);
        bool px = (x == p || x == q), py = (y == p || y == q);
        if (cmp == 1 && ((tx != ty) || (px != py))) return false;
        if (cmp == 2 && ((!tx && (ty || py)))) return false;
        if (cmp == 3 && ((!ty && (tx || px)))) return false;
        if (cmp == 4 && (((!tx && !px) && (ty || py)) || (px && ty))) return false;
        if (cmp == 5 && (((!ty && !py) && (tx || px)) || (py && tx))) return false;
    }
    return true;
}

LL dp[MAXN][MAXN];


int main() {
    //freopen("in.txt", "r", stdin);
    scanf("%d%d", &n, &k);
    bool flag = true;
    int cnt = 0;
    for (int i = 1; i <= k; i++) {
        for (int j = 0; j < 3; j++)
            scanf("%s", s[j]);
        int x = atoi(s[0]), y = atoi(s[2]);
        //cout << x << " " << y << endl;
        int cmp = getCmp(s[1]);
        if (x == y) {
            if (cmp == 2 || cmp == 3) flag = false;
            continue;
        }
        a[++cnt] = (node) {cmp, x, y};
    }
    if (!flag) {
        puts("0");
        return 0;
    }
    k = cnt;
    for (int i = 1; i < 2 * n; i++) {
        bool tag = true;
        for (int j = 1; j <= k; j++) {
            int cmp = a[j].cmp, x = a[j].x, y = a[j].y;
            if ((x == i && y == i + 1) || (x == i + 1 && y == i)) {
                if (cmp == 2 || cmp == 3) {
                    tag = false; break;
                }
            }
        }
        if (tag) dp[i][i + 1] = 1;
    }
    for (int l = 4; l <= 2 * n; l += 2) {
        for (int i = 1; i <= 2 * n - l + 1; i++) {
            int j = i + l - 1;
            if (check(i + 2, j, i, i + 1)) dp[i][j] += dp[i + 2][j];
            if (check(i, j - 2, j - 1, j)) dp[i][j] += dp[i][j - 2];
            if (check(i + 1, j - 1, i, j)) dp[i][j] += dp[i + 1][j - 1];
        }
    }
    printf("%I64d\n", dp[1][2 * n]);
    return 0;
}
内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值