题意:
题目链接:http://poj.org/problem?id=3261
在一个字符串S中求至少出现k次的最长的字符串的长度。
思路:
经典题,后缀数组+二分
注意此题需要离散化。
代码:
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN = 2e4 + 10;
const int INF = 0x3f3f3f3f;
int n, k;
int t1[MAXN], t2[MAXN], c[MAXN];
bool cmp(int *r, int a, int b, int l) {
return r[a] == r[b] && r[a + l] == r[b + l];
}
void build(int a[],int sa[],int rk[],int height[],int n,int m) {
n++;
int i, j, p, *x = t1, *y = t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = a[i]]++;
for(i = 1; i < m; i++) c[i] += c[i-1];
for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
for(j = 1; j <= n; j <<= 1) {
p = 0;
//直接利用sa数组排序第二关键字
for(i = n-j; i < n; i++)y[p++] = i;//后面的j个数第二关键字为空的最小
for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 1; i < m; i++) c[i] += c[i-1];
for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p = 1;
x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++;
if(p >= n)break;
m = p;//下次基数排序的最大值
}
int k = 0;
n--;
for(i = 0; i <= n; i++)rk[sa[i]] = i;
for(i = 0; i < n; i++)
{
if(k) k--;
j = sa[rk[i]-1];
while(a[i+k] == a[j+k])
k++;
height[rk[i]] = k;
}
}
int sa[MAXN], height[MAXN], rk[MAXN], a[MAXN];
bool check (int x) {
int cnt = 1;
for (int i = 1; i <= n; i++) {
if (height[i] >= x) ++cnt;
else {
if (cnt >= k) return true;
cnt = 1;
}
}
return cnt >= k;
}
int solve (int l, int r) {
int res = -1;
while (l <= r) {
int mid = (l + r) >> 1;
if (check (mid)) {
res = mid;
l = mid + 1;
}
else r = mid - 1;
}
return res;
}
int discre() {
vector <int> vec;
for (int i = 0; i < n; i++)
vec.push_back(a[i]);
sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());
int Max = 0;
for (int i = 0; i < n; i++) {
a[i] = lower_bound(vec.begin(), vec.end(), a[i]) - vec.begin() + 1;
Max = max(Max, a[i]);
}
return Max + 1;
}
int main(){
//freopen("in.txt", "r", stdin);
while (scanf ("%d%d", &n, &k) == 2) {
for (int i = 0; i < n; i++)
scanf ("%d", &a[i]);
a[n] = 0;
int m = discre();
build(a, sa, rk, height, n, m + 1);
int ans = solve (0, n);
printf ("%d\n", ans);
}
return 0;
}