【Markdown】markdown 输入数学符号

上下标

^ 表示上标, _ 表示下标,如果上标或下标内容多于一个字符,则使用 {} 括起来
示例:$$ x^{y^z} = (1+e^x)^{-2xy^w} $$
x y z = ( 1 + e x ) − 2 x y w x^{y^z} = (1+e^x)^{-2xy^w} xyz=(1+ex)2xyw

括号

() [] 直接写就行,而 {} 则需要转义
示例 :$$ f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}$$
f ( x , y ) = x 2 + y 2 , x ϵ [ 0 , 100 ] , y ϵ { 3 , 4 , 5 } f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\} f(x,y)=x2+y2,xϵ[0,100],yϵ{3,4,5}
有时候括号需要大号的,普通括号不好看,此时需要使用\left和\right加大括号的大小。
示例: $$(\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2$$
( x y ) 2 , ( x y ) 2 (\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2 (yx)2,(yx)2
\left 和 \right必须成对出现,对于不显示的一边可以使用 . 代替。
示例: \left. \frac{du}{dx} \right| _{x=0}
d u d x ∣ x = 0 \left. \frac{du}{dx} \right| _{x=0} dxdux=0

分数

使用 \frac{分子}{分母},或者使用 分子 \over 分母
示例:$$ \frac{1}{2x+1}$$ , $${{1} \over {2x+1}}$$

1 2 x + 1 \frac{1}{2x+1} 2x+11
1 2 x + 1 {{1} \over {2x+1}} 2x+11

开方

使用 \sqrt[n]{a}
示例:$$ \sqrt[3]{9}$$, $$\sqrt{16}$$
9 3 \sqrt[3]{9} 39 16 \sqrt{16} 16

省略号

有两种省略号,\ldots 表示语文本底线对其的省略号,\cdots 表示与文本中线对其的省略号,\cdot 表示一个点,也就是点乘号
示例: $$f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2$$
f ( x 1 , x 2 , … , x n ) = x 1 2 + x 2 2 + ⋯ + x n 2 f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2 f(x1,x2,,xn)=x12+x22++xn2

向量

使用 \vec{a}
示例:$$ \vec a \cdot \vec b = 0$$
a ⃗ ⋅ b ⃗ = 0 \vec a \cdot \vec b = 0 a b =0

积分

示例:$$ \int_0^1x^2dx$$
∫ 0 1 x 2 d x \int_0^1x^2dx 01x2dx

极限

示例:$$ \lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}$$
lim ⁡ n → + ∞ 1 n ( n + 1 ) \lim_{n\rightarrow+\infty}\frac{1}{n(n+1)} n+limn(n+1)1

累加/累乘

示例: $$\sum_1^n\frac{1}{x^2}$$, $$\prod_{i=0}^n{1 \over {x^2}}$$
∑ i = 1 n 1 x 2 \sum_{i=1}^n\frac{1}{x^2} i=1nx21 ∏ i = 0 n 1 x 2 \prod_{i=0}^n{1 \over {x^2}} i=0nx21

希腊字母

示例: $$\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega$$
α β γ Γ δ Δ ϵ ε ζ η θ Θ ϑ ι κ λ Λ μ ν ξ Ξ π Π ϖ ρ ϱ σ Σ ς τ υ Υ ϕ Φ φ χ ψ Ψ Ω ω \alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega αβγΓδΔϵεζηθΘϑικλΛμνξΞπΠϖρϱσΣςτυΥϕΦφχψΨΩω

需要转义的字符

示例:$$ \# \$ \%\&\_\{\}$$
# $ % & _ { } \# \$ \%\&\_\{\} #$%&_{}

汇总

普通符号

$$\pm \times \div \mid$$

± × ÷ ∣ \pm \times \div \mid ±×÷

集合运算

$$\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup$$
∅ ∈ ∉ ⊂ ⊃ ⊆ ⊇ ⋂ ⋃ ⋁ ⋀ ⨄ ⨆ \emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup /

对数运算

$$\log \lg \ln$$
log ⁡ lg ⁡ ln ⁡ \log \lg \ln loglgln

三角运算

$$\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc$$
⊥ ∠ 3 0 ∘ sin ⁡ cos ⁡ tan ⁡ cot ⁡ sec ⁡ csc ⁡ \bot \angle 30^\circ \sin \cos \tan \cot \sec \csc 30sincostancotseccsc

微积分运算

$$y{\prime}x \int \iint \iiint \oint \lim \infty \nabla$$
y ′ x ∫ ∬ ∭ ∮ lim ⁡ ∞ ∇ y{\prime}x \int \iint \iiint \oint \lim \infty \nabla yxlim

逻辑运算

$$\because \therefore \forall \exists$$
∵ ∴ ∀ ∃ \because \therefore \forall \exists

箭头

$$\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow$$
↑ ↓ ← → ⇑ ⇓ ⇐ ⇒ ⟵ ⟶ ⟸ ⟹ \uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow

连线

$$\overline{a+b+c+d}

\underline{a+b+c+d}

\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}

\hat{y} \check{y} \breve{y}$$

a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d

a + b + c + d ‾ \underline{a+b+c+d} a+b+c+d

a + b + c ⎵ 1.0 + d ⏞ 2.0 \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a+1.0 b+c+d 2.0

y ^ y ˇ y ˘ \hat{y} \check{y} \breve{y} y^yˇy˘

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值