上下标
^ 表示上标, _ 表示下标,如果上标或下标内容多于一个字符,则使用 {} 括起来
示例:$$ x^{y^z} = (1+e^x)^{-2xy^w} $$
x
y
z
=
(
1
+
e
x
)
−
2
x
y
w
x^{y^z} = (1+e^x)^{-2xy^w}
xyz=(1+ex)−2xyw
括号
() [] 直接写就行,而 {} 则需要转义
示例 :$$ f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}$$
f
(
x
,
y
)
=
x
2
+
y
2
,
x
ϵ
[
0
,
100
]
,
y
ϵ
{
3
,
4
,
5
}
f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}
f(x,y)=x2+y2,xϵ[0,100],yϵ{3,4,5}
有时候括号需要大号的,普通括号不好看,此时需要使用\left和\right加大括号的大小。
示例: $$(\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2$$
(
x
y
)
2
,
(
x
y
)
2
(\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2
(yx)2,(yx)2
\left 和 \right必须成对出现,对于不显示的一边可以使用 . 代替。
示例: \left. \frac{du}{dx} \right| _{x=0}
d
u
d
x
∣
x
=
0
\left. \frac{du}{dx} \right| _{x=0}
dxdu∣∣∣∣x=0
分数
使用 \frac{分子}{分母},或者使用 分子 \over 分母
示例:$$ \frac{1}{2x+1}$$ , $${{1} \over {2x+1}}$$
1
2
x
+
1
\frac{1}{2x+1}
2x+11
1
2
x
+
1
{{1} \over {2x+1}}
2x+11
开方
使用 \sqrt[n]{a}
示例:$$ \sqrt[3]{9}$$, $$\sqrt{16}$$
9
3
\sqrt[3]{9}
39
16
\sqrt{16}
16
省略号
有两种省略号,\ldots 表示语文本底线对其的省略号,\cdots 表示与文本中线对其的省略号,\cdot 表示一个点,也就是点乘号
示例: $$f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2$$
f
(
x
1
,
x
2
,
…
,
x
n
)
=
x
1
2
+
x
2
2
+
⋯
+
x
n
2
f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2
f(x1,x2,…,xn)=x12+x22+⋯+xn2
向量
使用 \vec{a}
示例:$$ \vec a \cdot \vec b = 0$$
a
⃗
⋅
b
⃗
=
0
\vec a \cdot \vec b = 0
a⋅b=0
积分
示例:$$ \int_0^1x^2dx$$
∫
0
1
x
2
d
x
\int_0^1x^2dx
∫01x2dx
极限
示例:$$ \lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}$$
lim
n
→
+
∞
1
n
(
n
+
1
)
\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}
n→+∞limn(n+1)1
累加/累乘
示例: $$\sum_1^n\frac{1}{x^2}$$, $$\prod_{i=0}^n{1 \over {x^2}}$$
∑
i
=
1
n
1
x
2
\sum_{i=1}^n\frac{1}{x^2}
i=1∑nx21
∏
i
=
0
n
1
x
2
\prod_{i=0}^n{1 \over {x^2}}
i=0∏nx21
希腊字母
示例: $$\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega$$
α
β
γ
Γ
δ
Δ
ϵ
ε
ζ
η
θ
Θ
ϑ
ι
κ
λ
Λ
μ
ν
ξ
Ξ
π
Π
ϖ
ρ
ϱ
σ
Σ
ς
τ
υ
Υ
ϕ
Φ
φ
χ
ψ
Ψ
Ω
ω
\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega
αβγΓδΔϵεζηθΘϑικλΛμνξΞπΠϖρϱσΣςτυΥϕΦφχψΨΩω
需要转义的字符
示例:$$ \# \$ \%\&\_\{\}$$
#
$
%
&
_
{
}
\# \$ \%\&\_\{\}
#$%&_{}
汇总
普通符号
$$\pm \times \div \mid$$
± × ÷ ∣ \pm \times \div \mid ±×÷∣
集合运算
$$\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup$$
∅
∈
∉
⊂
⊃
⊆
⊇
⋂
⋃
⋁
⋀
⨄
⨆
\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup
∅∈∈/⊂⊃⊆⊇⋂⋃⋁⋀⨄⨆
对数运算
$$\log \lg \ln$$
log
lg
ln
\log \lg \ln
loglgln
三角运算
$$\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc$$
⊥
∠
3
0
∘
sin
cos
tan
cot
sec
csc
\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc
⊥∠30∘sincostancotseccsc
微积分运算
$$y{\prime}x \int \iint \iiint \oint \lim \infty \nabla$$
y
′
x
∫
∬
∭
∮
lim
∞
∇
y{\prime}x \int \iint \iiint \oint \lim \infty \nabla
y′x∫∬∭∮lim∞∇
逻辑运算
$$\because \therefore \forall \exists$$
∵
∴
∀
∃
\because \therefore \forall \exists
∵∴∀∃
箭头
$$\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow$$
↑
↓
←
→
⇑
⇓
⇐
⇒
⟵
⟶
⟸
⟹
\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow
↑↓←→⇑⇓⇐⇒⟵⟶⟸⟹
连线
$$\overline{a+b+c+d}
\underline{a+b+c+d}
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
\hat{y} \check{y} \breve{y}$$
a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d
a + b + c + d ‾ \underline{a+b+c+d} a+b+c+d
a + b + c ⎵ 1.0 + d ⏞ 2.0 \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a+1.0 b+c+d 2.0
y ^ y ˇ y ˘ \hat{y} \check{y} \breve{y} y^yˇy˘