自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Aaron的博客

人工智能的在校大学生,按时更新精品文章~

  • 博客(92)
  • 资源 (3)
  • 问答 (1)
  • 收藏
  • 关注

原创 YOLO5实战6-将推理结果的检测框显示英文改成显示中文并推理测试

很多人在训练yolov5目标检测的时候,标签只能显示英文的。那么怎么样才可以训练一个可以检测物体并且显示中文标签的模型呢。那么我们来介绍。本文结尾有我已经完成好的整个工程文件,有需要的自行下载!...

2022-07-18 13:37:15 1521 6

原创 安装tensorflow的GPU版本(详细图文教程)--CUDA11.6的安装

TensorFlow是深度学习领域使用最为广泛的一个Google的开源软件库(最初由Google brain team进行开发的内部库,由于它的易用性Google决定把它开源出来).采取数据流图,用于数值计算.节点——处理数据线——节点间的输入输出关系数据流图中的数据叫做tensor, 表示张量, 即N维数据, tensor在数据流图中流动表示计算的过程, 这也是tensorflow名字的由来.支持多种平台,GPU、CPU、移动设备tensorflow特性:在官网可以下载python3.9并安装好。这里我就

2022-06-14 09:00:00 43607 136

原创 详细介绍在ubuntu20.04如何安装ROS系统,附常见错误的解决办法

安装ros的详细教程,速藏!!!

2022-01-26 15:04:02 23709 67

原创 ROS1学习笔记:launch启动文件的使用方法

基于VMware Ubuntu 20.04 Noetic版本的环境。

2023-04-17 13:22:54 2717

原创 ROS1学习笔记:常用可视化工具的使用(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2023-04-17 13:22:34 1238 1

原创 ROS1学习笔记:tf坐标系广播与监听的编程实现(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2023-03-10 14:39:31 1638

原创 ROS1学习笔记:ROS中的坐标管理系统(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2023-02-28 11:52:04 1699

原创 ROS1学习笔记:参数的使用与编程方法(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2023-01-10 11:03:10 1128

原创 ROS1学习笔记:服务数据的定义与使用(ubuntu20.04)

build_depend为编译依赖,这里依赖的是一个会动态产生message的功能包exer_depend为执行依赖,这里依赖的是一个动态runtime运行的功能包。

2022-12-27 14:24:55 697

原创 ROS1学习笔记:服务中的Service和Client(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2022-11-17 11:47:13 1014

原创 ROS1学习笔记:话题消息的定义与使用(ubuntu20.04)

我们通过自定义msg文件来自定义话题消息Person.msg先在文件夹下创建msg文件夹然后进入msg文件夹,打开终端,输入创建文件(当然手动创建也可以)注意Person的P要大写然后打开Person.msguint8 sexuint8 age这里使用的基础数据类型string、uint8都是语言无关的,编译阶段会变成各种语言对应的数据类型。定义话题消息有自己的一套规则,并不是严格地按照C++或者Python的类型定义,这是一个动态过程。

2022-10-11 12:40:06 1659 9

原创 ROS1学习笔记:话题中的Publisher与Subscriber(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2022-09-28 22:34:25 1826 13

原创 ROS1学习笔记:创建工作环境与功能包(ubuntu20.04)

使用ROS实现机器人开发的主要手段当然是写代码,那么这些代码文件就需要放置到一个固定的空间内,也就是工作空间。什么是工作空间(workspace)?工作空间(workspace)是一个存放工程开发相关文件的文件夹。Fuerte版本之后的ROS默认使用的是Catkin编译系统,一个典型Catkin编译系统下的工作做空间结构如图所示:典型的工作空间中一般包含包括以下四个目录空间:代码空间(Source Space),开发过程中最常用的文件夹用来存储所有ROS功能包的源码文件。其实就是存放功能包和源码。

2022-09-20 21:33:48 4108 15

原创 ROS1学习笔记:ROS命令行工具的使用(ubuntu20.04)

基于VMware Ubuntu 20.04 Noetic版本的环境。

2022-09-18 11:17:39 3328 13

原创 def __init__(self)->None 这个->None是什么意思

(self)->int 这个->int说明返回的是一个int类型的数据。没啥用,只是为了规范,删去也可以。这个说明结果不返回数据。

2022-09-18 03:30:00 2781

原创 Python类中self.name = name和self._name = name的区别

本质区别是self.name = name 可以 实例.name 外部访问。在类的内部访问变量的时候用下划线"_"其他类要访问这个类的变量时用"."

2022-09-15 00:15:00 1300 1

原创 Python中类的初始化形式def __init__(self)和def __init__(self,args)

如上述代码,在对类Student进行实例化时,因为__init__方法有参数self,name和grade,因此在实例化对象时一定要传入name和grade参数。如上述代码,在对类Student进行实例化时,因为__init__方法只有一个参数self,因此不需要传入其他参数。当需要打印print_grade方法的结果时,只需要对name和grade进行赋值即可。实例化时,需要实例化之后,再进行赋值。这种形式在__init__方法中,除了有参数self,还有其他的参数args。实例化时,直接传入参数。

2022-09-12 17:30:23 9981 16

原创 一文读懂标量、向量、矩阵、张量的关系

然而,矩阵乘法的规则是,只有当第一列中的列数等于第二列中的行数时,两个矩阵才能相乘(即,内部维度相同,n为(m × n)) – 矩阵乘以(n × p)矩阵,得到(m × p)-矩阵。向量空间(也称为线性空间)是称为对象的集合的载体,其可被添加在一起,并乘以由数字(“缩放”),所谓的标量。用通俗的说法,标量是只有大小,没有方向的量。矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。..

2022-09-01 15:46:44 4827 23

原创 浅层神经网络和深层神经网络介绍

假设我们有如下结构的网络对于这个网络我们建立一个简单的图示?我们对第一个隐藏层记为[1],输出层为[2]。如下图计算图如下z1[1]=(W1[1])Tx+b1[1]z _1^{[1]} = (W _1^{[1]})^Tx+b _1^{[1]}z1[1]​=(W1[1]​)Tx+b1[1]​a1[1]=σ(z1[1])a _1^{[1]} = \sigma(z _1^{[1]})a1[1]​=σ(z1[1]​)z2[1]=(W2[1])Tx+b2[1]z _2^{[1]} = (W _2^{[1]})^Tx+

2022-08-12 13:19:22 2717 2

原创 神经网络基础介绍

逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个xx , 输出一个该样本属于1对应类别的预测概率y^=P(y=1∣x)\hat{y}=P(y=1|x)y^​=P(y=1∣x)。Logistic 回归中使用的参数如下:e−ze^{-z}e−z的函数如下例如:**损失函数(loss function)**用于衡量预测结果与真实值之间的误差。最简单的损失函数定义方式为平方差损失:L(y^,y)=12(y^−y)2L(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2L(y^​

2022-07-20 11:00:00 520 1

原创 YOLO5实战5-保姆级带你推理测试结果

等到数据训练好了以后,就会在主目录下产生一个run文件夹,在run/train/exp/weights目录下会产生两个权重文件,一个是最后一轮的权重文件,一个是最好的权重文件,一会我们就要利用这个最好的权重文件来做推理测试。这里我准备了一个hat.mp4,用于对视频进行推理测试,感兴趣的可以自行下推理试试。也可以准备好一个新的视频去推理。源代码推理的视频是没有音频的,这个是我后面在无声的视频上接上的音频,这样看起来更舒服!对视频进行测试,和如上的图片的测试是一样的,只不过是将图片的路径改为视频的路径而已。.

2022-07-18 13:36:36 578

原创 YOLO5实战4-保姆级带你训练自己的数据集(附常见错误的解决办法)

YOLOv5的代码是开源的,因此我们可以从全球最大的男性交友网站-github上克隆其源码。首先打开yolov5的github的官网(这个网站在国外打开是很慢的,而且是有的时候能正常打开,有的时候是进不去的,但是大家第一次打不开的话,一定要多打开几次。)打开官网的页面是这样的我们将下载好的yolov5的压缩包进行解压。解压后的文件夹目录是这样的然后用自己熟悉的IDE打开,我这里用的是pycharm,打开后整个代码目录是这样的。然后对代码的整体框架进行介绍data同级目录下面。的检测。...

2022-07-18 13:35:46 705

原创 YOLO5实战3-目标检测中的数据集格式转化以及训练集和验证集划分

由于yolov5训练需要的数据标签格式为txt格式,所以有时候我们利用labelimg标注的时候会用yolo格式(标注生成的标签为txt格式)。标注好的数据集训练的时候就要划分为训练集和验证集,因此就需要有划分为训练集和测试集的代码。因此我们可以将txt格式的数据集先转换成xml格式的数据集,然后再按将xml格式标签转化成txt格式标签并划分为训练集和验证集。至此,xml格式的标签文件转换为txt格式的标签文件并划分为训练集和测试集就介绍完了。保存好的标签种类,不然生成的txt文件是不对的。...

2022-07-18 13:34:46 635

原创 YOLO5实战2-教你使用labelimg制作自己的深度学习目标检测数据集

LabelImg是一个图形图像注释工具。它是用Python编写的,并使用Qt作为其图形界面。同时它也是一款开源的数据标注工具,可以标注三种格式。标注的格式数据可用于人工智能数据集训练。VOC标签格式,保存为xml文件。YOLO标签格式,保存为txt文件。createML标签格式,保存为json格式。待标注图片数据的路径文件夹,这里输入命令的时候就选定了JPEGImages。(当然这是可以换的)保存类别标签的路径文件夹,这里我们选定了Annotations文件夹。常用快捷键功能A。...

2022-07-18 13:33:53 1355

原创 深度学习介绍

深度学习(DL,DeepLearning)是(ML,MachineLearning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——深度学习是学习的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,和等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在,以及其他相关领域都取得了很多成果。......

2022-07-17 23:03:34 2455 21

原创 懒人界的福音-Visual Python神器拯救不想写代码的你

单击橙色按钮出现下面visualpython主界面,可以看到有很多的功能。

2022-07-14 23:02:36 2063 39

原创 YOLO5实战1-利用Anaconda安装pytorch环境

在安装pytorch环境之前,我们要知道anaconda是什么且基本用法,参加文章:还是搞不懂Anaconda是什么?读这一篇文章就够了打开Anaconda Prompt,创建pytorch虚拟环境,并配上3.8版本的Python包。安装完后查看是否安装成功。从图中看到了已经成功安装好pytorch虚拟环境。然后激活pytorch虚拟环境。可以看到我们从base环境切换到pytorch环境了。接下来我们在pytorch环境下安装pytorch-gpu的包。由于pytorch的官网在国外,下载相关

2022-07-08 20:03:09 1774 19

转载 解决笔记本电脑开热点后手机能上网而电脑不能上网的问题

参考文章:笔记本电脑开启热点后电脑无法上网问题——亲测可行【06-17】

2022-07-07 10:43:45 1000 1

原创 成功解决error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“

最近在做深度学习的yolo5目标追踪的学习,在下载依赖包时,报了如下错误:原因是没有C++的编译环境,为此我们要去官网下载好Visual Stuido Code。附下载链接:Visual Stuido Code记住!一定要下载System Installer版本的!下载好后根据安装提示下载就好了。网上有很多教程,这里不再赘述。安装好后,我再试试pip安装,还是失败了,查了很多原因,才知道安装好后,我们得配置好visual studio C++ build tools的安装文件,但是在安装的过程中会

2022-07-06 23:51:48 14542 23

原创 解决visual studio C++ build tools时安装包缺失或损坏的问题(亲测绝对有用!!!)

安装visual studio C++ build tools时遇到安装包缺失或损坏的问题。这个问题真的困扰我好久,尝试过很多种办法都失败了,我真的很无语、、、我尝试过卸载掉visual studio重新下载、用VPN安装、下载多个都尝试过一遍,都失败了。。。。。。最终终于成功了!参考博客:win10安装visual studio C++ build tools超简单教程(离线适用)百度网盘下载:链接:https://pan.baidu.com/s/1JU9zMs03DXViwqM3vDZjMg提取

2022-07-06 23:47:37 15275 35

原创 Python自动操作 GUI 神器——PyAutoGUI

参考原文:Python自动操作 GUI 神器——PyAutoGUI记录——去繁就简本文章来介绍如何通过Python来控制桌面实现自动化操作。桌面自动化操作是通过定位鼠标在桌面的位置,然后根据定位的位置执行对应的操作。我们今天的主人公是 ,是一个纯 Python 的 GUI 自动化工具,通过它可以让程序自动控制鼠标和键盘的一系列操作来达到自动化测试的目的。模块安装,打开cmd,输入:成功展示:安装好后就可以直接使用了。导包鼠标操作鼠标信息pyautogui.position() 获取鼠标位置p

2022-07-04 22:01:39 7177 39

原创 详细些介绍如何通过MQTT协议和华为云物联网进行通信

首先登进华为云官网地址:华为云官网进入主页面后,搜索物联网选择lotDA进入点击立即使用然后在总览页面点击平台接入地址从这里可以看到华为云物联网MQTT协议端口号也域名地址然后在产品一栏点击创建产品根据提示填写信息在产品的所有设备一栏点击注册设备根据提示填写信息设置完后会生成信息,下载好保存!这是我的设备信息点击查看产品中创建好的设备选择自定义模型添加服务接下来就是添加属性吗,属性就是传感器上传的数据类型,需要展示的数据;根据自己的传感器数量、类型自己定义即可。

2022-07-02 14:29:40 4304 17

原创 详细介绍遗传算法的原理以及最值问题代码实现(MATLAB/Python)

传统的优化方法1)依赖于初始条件。2)与求解空间有紧密关系,促使较快地收敛到局部解,但同时对解域有约束,如可微或连续。利用这些约束,收敛快。3)有些方法,如Davison-Fletcher-Powell直接依赖于至少一阶导数;共轭梯度法隐含地依赖于梯度。智能优化方法1)不依赖于初始条件;2)不与求解空间有紧密关系,对解域,无可微或连续的要求。求解稳健,但收敛速度慢。能获得全局最优。适合于求解空间不知的情况。b站学习地址:通俗易懂讲算法-最优化之遗传算法(GA)遗传算法(Genetic Algori

2022-06-30 13:55:19 3543 34

原创 机器学习实战-SVM模型实现人脸识别

文章目录SVM建模进行人脸识别案例1、导包2、加载数据集3、直接使用SVM模型建模4、数据可视化5、网络搜索优化确定最佳性能6、使用最佳性能SVM建模7、优化后的数据可视化8、完整代码8.1未优化的完整代码8.2优化后的完整代码SVM建模进行人脸识别案例1、导包首先进行导包from sklearn.decomposition import PCAimport numpy as npfrom sklearn.svm import SVCimport matplotlib.pyplot as pl

2022-05-31 19:17:43 5582 53

原创 OpenCV学习笔记15-目标跟踪算法介绍及实战

文章目录1. 目标追踪介绍2. OpenCV目标追踪算法介绍3. 目标追踪过程3.1 定义目标追踪算法3.2 初始化追踪器集合3.3 更新目标追踪器3.4 绘制目标区域3.5 对感兴趣的区域进行框截取ROI:3.5.1 框选ROI区域:3.5.2 截取ROI:3.7 **根据需要创建新的追踪目标**3.7.1 创建一个实际的目标追踪器:3.7.2 将选择好的目标添加到追踪器上:4. 目标跟踪算法的使用1. 目标追踪介绍知乎上有篇文章对目标追踪介绍的非常清晰. 目标追踪综述2. OpenCV目标追踪算法

2022-05-16 16:25:17 6371 64

原创 Jupyter notebook/Pycharm调用Anaconda虚拟环境

文章目录Jupyter notebook调用Anaconda虚拟环境Pycharm调用Anaconda虚拟环境Jupyter notebook调用Anaconda虚拟环境本文章适合已安装好Anaconda的uu们使用,如果还没有安装好Anaconda或者对Anaconda不了解的可以看我这篇文章哦~绝对让你恍然大悟首先我们打开anaconda prompt,激活虚拟环境:在当前环境中安装ipykernelconda install ipykernel -y继续在该环境中安装nb_cond

2022-05-07 14:58:00 2383 43

原创 还是搞不懂Anaconda是什么?读这一篇文章就够了

文章目录1 Anaconda介绍2 conda介绍3 安装Anaconda4 Anaconda的使用配置Anaconda源5 创建虚拟环境并使用5.1 创建虚拟环境5.2 查看所有环境5.3 激活环境5.4 安装包5.4.1 conda方式5.4.2 pip方式5.4.3 从Anaconda.org安装包5.5 查看该环境的所有包5.6 测试是否安装成功6 退出当前环境7 删除环境/包1 Anaconda介绍概述Anaconda,中文大蟒蛇,是一个开源的Anaconda是专注于数据分析的Pytho

2022-05-07 14:53:35 128257 68

原创 OpenCV学习笔记14-计算机视觉中的背景减除介绍及代码实现

参考文章:https://blog.csdn.net/tengfei461807914/article/details/81588808https://zhuanlan.zhihu.com/p/31103280文章目录背景减除方法选择:MOGMOG2GMGCNTKNN总结背景减除计算机视觉的前景和背景:前景:你感兴趣、要研究的对象,如车辆识别统计中的车辆背景:不是你想要研究的对象,如车辆识别统计中的天空、数目、阴影等等**背景减除(Background Subtraction)是许多基于计

2022-05-01 20:04:05 7371 59

原创 OpenCV学习笔记13-图像直方图的介绍及代码实现

是用一表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素数。这种直方图中,横坐标的左侧为纯黑、较暗的区域,而右侧为较亮、纯白的区域。因此,一张较暗图片的图像直方图中的数据多集中于左侧和中间部分,而整体明亮、只有少量阴影的图像则相反。又如下图:绿圈圈出现少有像素分布其上的强度值,对其应用均衡化后,得到中间图所示的直方图,均衡化的图像见最右图所示。,返回一个shape为(256,1)的数组,表示0-255每个像素值对应的像素个数,下标即为相应的像素值。的分布范围,使得在0~255灰阶上的分布。

2022-04-30 16:07:21 4687 46

原创 详细介绍如何在华为云调用SDK的Python代码(以文字识别OCR技术实现身份证识别为例)

文章目录1 保存信息2 安装SDK3 生成代码1 保存信息首先我们在首页的产品一栏输入OCR,找到文字识别OCR然后找到证件类,并点击,然后点击立即使用进入到文字识别-控制台,找到身份证识别服务,并开通当显示已开通则表明开通成功!因为开通使用要钱,我们可以回到首页,点击概述,下拉找到证件OCR的免费试用,点击开通一下。回到首页,找到产品文档,并点击然后在SDK参考找到Python SDK,并点击点击“我的凭证”,跳转到该页面点击访问密钥点击新增访问密钥文字描述我们写

2022-04-28 10:11:01 48307 16

机器学习常用的开发框架和环境配置的安装过程和选择理由

本文档详细介绍了有关机器学习的开发环境和软件的安装过程和使用介绍,并也介绍了常用的深度学习框架的安装和使用介绍,如TensorFlow、pytorch、mindspore等等。

2022-06-08

Python实现邮箱自动化处理

Python实现邮箱(以QQ邮箱为例)自动化处理,包括自动发送、读取、删除、定时发送等等 目录 1 模块介绍与安装 2 利用Python发送邮件 2.1 发送一封简单的电子邮件 2.2 发送含HTML样式的电子邮件 2.3 发送带附件的电子邮件 2.4 以邮件的内容发送,而不是作为附件形式发送 2.5 群发邮件 2.6 定时发送邮件 2.7 发送CSV文件的内容 3 利用Python读取邮件 3.1 读取全部邮件内容 3.2 读取未读的邮件 3.3 读取红旗(星级)邮件 3.3 读取某发件人的邮件 3.4 读取某收件人的邮件 3.5 将未读邮件标记为已读 4 利用Python筛选邮件 5 利用Python删除指定邮件 案例

2022-04-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除