题目描述
鸡尾酒最喜欢吃东北的烤面包片了。每次到东北地区的区域赛或者是秦皇岛的wannafly camp,鸡尾酒都会吃很多的烤面包片,即使比赛打铁也觉得不枉此行。
“我想吃烤面包片!!!”这不,半年没吃烤面包片的鸡尾酒看到大家都聚集在秦皇岛参加暑假camp,羡慕地发出了想要的声音。
当鸡尾酒“想要”的时候,他说的话会带三个感叹号来表示非常“想要”。至于有多“想要”,他给了你一个算式让你来体会。
给你两个整数 n 和 mod,输出 n!!! 对 mod 求余的结果(每个! 都代表一个阶乘符号)
输入描述
输入共一行包含两个整数依序为 n 和 mod,意义如题面所示。(0 ≤ n ≤ 10^9,1≤mod≤10^9)
输出描述
输出一个小于 mod 的非负整数表示答案。
样例输入 1
2 6324
样例输出 1
2
样例输入 2
3 999999999
样例输出 2
731393874
提示
在第一个样例中,由于 2! = 2,所以 2!!! = (((2!)!)!) = ((2!)!) = (2!) =2。2模了6324还是2!所以答案为2。
题解:
因为n和mod都可以取到10^9,所以暴力肯定会t,进行多次测试会发现4的三次阶乘远大于10^9,所以mod无论取什么模均为0,这样我们只需考虑0、1、2、3这四种情况,注意算3的时候,有的同学是3!、(3!)!、((3!)!)!一步一步算的,在阶乘过程中不要取模,否则会影响最终结果。
代码:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<map>
#include<set>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define swap(a,b) (a=a+b,b=a-b,a=a-b)
#define maxn 100007
#define N 100000000
#define INF 0x3f3f3f3f
#define mod 1001113
#define e 2.718281828459045
#define eps 1.0e18
#define PI acos(-1)
#define lowbit(x) (x&(-x))
#define read(x) scanf("%d",&x)
#define put(x) prllf("%d\n",x)
#define memset(x,y) memset(x,y,sizeof(x))
#define Debug(x) cout<<x<<" "<<endl
#define lson i << 1,l,m
#define rson i << 1 | 1,m + 1,r
#define ll long long
//std::ios::sync_with_stdio(false);
//cin.tie(NULL);
//const int maxn=;
using namespace std;
int main()
{
ll n,modn;
ll k,kk;
ll s=1;
int flag=0;
cin>>n>>modn;
if(n==0||n==1)
cout<<1%modn<<endl;
else if(n==2)
cout<<2%modn<<endl;
else if(n==3)
{
if(modn<=720)
cout<<"0"<<endl;
else
{
for(ll i=1; i<=720; i++)
{
s=s*i%modn;
}
cout<<s<<endl;
}
}
else if(n>=4)
cout<<"0"<<endl;
return 0;
}