第四章-基于神经网络方法求解RL-DQN-Parl版

第四章-基于神经网络方法求解RL-DQN代码

主要内容为题主在学习机器学习时记录的内容,主要为使用Parl的DQN的一些代码。

文章目录

  • 第四章-基于神经网络方法求解RL-DQN代码
  • 一、使用Parl的DQN代码
  • 1.1 model
  • 1.2 algorithm
    • 1.2.1 DQN代码
  • 1.2.2 learn函数
    • 1.3 agent
      • 1.3.1 build_program 与 learn 函数
      • 1.3.2 sample 与 predict 函数
  • 二、使用DQN玩MountianCar-v0
    • 2.1 CartPole简介
    • 2.2 Main 函数
      • 2.2.1 流程图
      • 2.2.2 代码
    • 2.3 训练和评估
      • 2.3.1 训练
      • 2.3.2 评估
    • 2.4 整体代码和运行结果

一、使用Parl的DQN代码

1.1 model

gent把产生的数据传给algorithm,algorithm根据model的模型结构计算出Loss,使用SGD或者其他优化器不断的优化。
model类将继承parl.Model ,主要实现value函数,用来输出价值。
这里定义了三层的全连接网络,使用时直接调用value函数,输入obs,即可输出Q值。

class Model(parl.Model):
    def __init__(self, act_dim):
        hid1_size = 128
        hid2_size = 128
        # 3层全连接网络
        self.fc1 = layers.fc(size=hid1_size, act='relu')
        self.fc2 = layers.fc(size=hid2_size, act='relu')
        self.fc3 = layers.fc(size=act_dim, act=None)

    def value(self, obs):
        # 定义网络
        # 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...]
        h1 = self.fc1(obs)
        h2 = self.fc2(h1)
        Q = self.fc3(h2)
        return Q

1.2 algorithm

1.2.1 DQN代码

Algorithm主要定义了具体的算法来更新Model网络。DQN的算法代码为:

# from parl.algorithms import DQN # 也可以直接从parl库中导入DQN算法

class DQN(parl.Algorithm):
    def __init__(self, model, act_dim=None, gamma=None, lr=None):
        """ DQN algorithm
        
        Args:
            model (parl.Model): 定义Q函数的前向网络结构
            act_dim (int): action空间的维度,即有几个action
            gamma (float): reward的衰减因子
            lr (float): learning rate 学习率.
        """
        self.model = model
        self.target_model = copy.deepcopy(model)

        assert isinstance(act_dim, int)
        assert isinstance(gamma, float)
        assert isinstance(lr, float)
        self.act_dim = act_dim
        self.gamma = gamma
        self.lr = lr

    def predict(self, obs):
        """ 使用self.model的value网络来获取 [Q(s,a1),Q(s,a2),...]
        """
        return self.model.value(obs)

    def learn(self, obs, action, reward, next_obs, terminal):
        """ 使用DQN算法更新self.model的value网络
        """
        # 从target_model中获取 max Q' 的值,用于计算target_Q
        next_pred_value = self.target_model.value(next_obs)
        best_v = layers.reduce_max(next_pred_value, dim=1)
        best_v.stop_gradient = True  # 阻止梯度传递
        terminal = layers.cast(terminal, dtype='float32')
        target = reward + (1.0 - terminal) * self.gamma * best_v

        pred_value = self.model.value(obs)  # 获取Q预测值
        # 将action转onehot向量,比如:3 => [0,0,0,1,0]
        action_onehot = layers.one_hot(action, self.act_dim)
        action_onehot = layers.cast(action_onehot, dtype='float32')
        # 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
        # 比如:pred_value = [[2.3, 5.7, 1.2, 3.9, 1.4]], action_onehot = [[0,0,0,1,0]]
        #  ==> pred_action_value = [[3.9]]
        pred_action_value = layers.reduce_sum(
            layers.elementwise_mul(action_onehot, pred_value), dim=1)

        # 计算 Q(s,a) 与 target_Q的均方差,得到loss
        cost = layers.square_error_cost(pred_action_value, target)
        cost = layers.reduce_mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=self.lr)  # 使用Adam优化器
        optimizer.minimize(cost)
        return cost

    def sync_target(self):
        """ 把 self.model 的模型参数值同步到 self.target_model
        """
        self.model.sync_weights_to(self.target_model)

也可以直接从Parl库中导入DQN算法。

1.2.2 learn函数

因为learn函数中调用了很多写好的函数,所以这里来详细讲一下。
在这里插入图片描述

  1. 总体分为三部分,第一部分计算target_Q, 第二部分计算预测值,第三部分得到loss,放到优化器里面优化。
  2. learn的输入为一批经验,传进来首先要计算target Q。
  3. target Q的计算需要用到这个公式,这个公式就是Qlearning的公式,该公式有一个if-else的条件,如果这条经验是episode的最后一条经验,它的目标值就是当前的r(因为没有下一步的状态),否则计算target Q。
  4. 这个if-else可以用一个小技巧来化解。首先将terminal(也就是之前提到的done)转换为浮点数,如果是true就是1,false就是0。再被1.0减后乘以gamma和best,就实现了if-else的功能。
  5. 之后我们要计算Q预测,Q预测的输入为obs,之后我们得到的pred-value是一个向量(吧,这里有点不理解),有多少个action(如果有四个动作上下左右,那么就有四个维度,0-0-0-0,选择上时为1-0-0-0)就有多少个维度。它主要表示Q(s,a1),Q(s,a2),Q(s,a3),Q(s,a4),Q(s,a5)。然后将action转为onehot向量,在与pred-value按位相乘,再加起来,就可以拿到你要的QSA。
  6. 之后我们计算QSA与target Q的均方差。(直接使用layers下面的函数)
  7. 再将均方差扔进adam的优化器中。(直接调用Adam)
  8. target Q有一个阻止梯度传递的操作,因为target Q用到了 taeget model的值,但是target model的参数需要固定不动,所以我们需要加这一行来切断联系。

1.3 agent

1.3.1 build_program 与 learn 函数

  1. 核心的算法都在algorithm中,agent负责与环境交互
  2. 数据传过来后付给这些变量,他们的定义在build_program 中
class Agent(parl.Agent):
    def __init__(self,
                 algorithm,
                 obs_dim,
                 act_dim,
                 e_greed=0.1,
                 e_greed_decrement=0):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)

        self.global_step = 0
        self.update_target_steps = 200  # 每隔200个training steps再把model的参数复制到target_model中

        self.e_greed = e_greed  # 有一定概率随机选取动作,探索
        self.e_greed_decrement = e_greed_decrement  # 随着训练逐步收敛,探索的程度慢慢降低

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):  # 搭建计算图用于 预测动作,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.value = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):  # 搭建计算图用于 更新Q网络,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)

    def learn(self, obs, act, reward, next_obs, terminal):
        # 每隔200个training steps同步一次model和target_model的参数
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1

        act = np.expand_dims(act, -1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]  # 训练一次网络
        return cost

1.3.2 sample 与 predict 函数

sample函数与Q-learning函数相同,即有一定概率取最优值,一定概率做动作。

sample:


    def sample(self, obs):
        sample = np.random.rand()  # 产生0~1之间的小数
        if sample < self.e_greed:
            act = np.random.randint(self.act_dim)  # 探索:每个动作都有概率被选择
        else:
            act = self.predict(obs)  # 选择最优动作
        self.e_greed = max(
            0.01, self.e_greed - self.e_greed_decrement)  # 随着训练逐步收敛,探索的程度慢慢降低
        return act

predict用来获取计算的q值。


    def predict(self, obs):  # 选择最优动作
        obs = np.expand_dims(obs, axis=0)
        pred_Q = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.value])[0]
        pred_Q = np.squeeze(pred_Q, axis=0)
        act = np.argmax(pred_Q)  # 选择Q最大的下标,即对应的动作
        return act

二、使用DQN玩MountianCar-v0

2.1 CartPole简介

CartPole应该是强化学习界的hello world,他是移动小车维持杆子平衡的游戏。
它的状态值为2维的向量,包含 小车位置小车速度
它的动作有3个:0-小车向左移、1-不动、2-右移。
它的奖励为:每一个step奖励-1,直到终止。
终止条件为:到达终点,episode超过两百个steps。
在这里插入图片描述

我们的目标是使用强化学习DQN使得在步数最少的情况下到达终点。

2.2 Main 函数

2.2.1 流程图

在这里插入图片描述

2.2.2 代码

因为agent、algorithm、model都是写好的,可以直接调用。
main函数中有一点是需要预先往经验池中放一些数据,存满后再从里面随机挑选。

env = gym.make('CartPole-v0')  # CartPole-v0: 预期最后一次评估总分 > 180(最大值是200)
action_dim = env.action_space.n  # CartPole-v0: 2
obs_shape = env.observation_space.shape  # CartPole-v0: (4,)

rpm = ReplayMemory(MEMORY_SIZE)  # DQN的经验回放池

# 根据parl框架构建agent
model = Model(act_dim=action_dim)
algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
    algorithm,
    obs_dim=obs_shape[0],
    act_dim=action_dim,
    e_greed=0.1,  # 有一定概率随机选取动作,探索
    e_greed_decrement=1e-6)  # 随着训练逐步收敛,探索的程度慢慢降低

# 加载模型
# save_path = './dqn_model.ckpt'
# agent.restore(save_path)

# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
    run_episode(env, agent, rpm)

max_episode = 2000

# 开始训练
episode = 0
while episode < max_episode:  # 训练max_episode个回合,test部分不计算入episode数量
    # train part
    for i in range(0, 50):
        total_reward = run_episode(env, agent, rpm)
        episode += 1

    # test part
    eval_reward = evaluate(env, agent, render=False)  # render=True 查看显示效果
    logger.info('episode:{}    e_greed:{}   test_reward:{}'.format(
        episode, agent.e_greed, eval_reward))

# 训练结束,保存模型
save_path = './dqn_model.ckpt'
agent.save(save_path)

2.3 训练和评估

2.3.1 训练


# 训练一个episode
def run_episode(env, agent, rpm):
    total_reward = 0
    obs = env.reset()
    step = 0
    while True:
        step += 1
        action = agent.sample(obs)  # 采样动作,所有动作都有概率被尝试到
        next_obs, reward, done, _ = env.step(action)
        rpm.append((obs, action, reward, next_obs, done))

        # train model
        if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
            (batch_obs, batch_action, batch_reward, batch_next_obs,
             batch_done) = rpm.sample(BATCH_SIZE)
            train_loss = agent.learn(batch_obs, batch_action, batch_reward,
                                     batch_next_obs,
                                     batch_done)  # s,a,r,s',done

        total_reward += reward
        obs = next_obs
        if done:
            break
    return total_reward

训练的时候会使用sample,有动作探索。
训练时才更新Q算法。

2.3.2 评估

因为强化学习有不稳定性,就像人玩游戏也会有手感和运气特别好的时候。所以需要评估。
评估时使用predict,直接选最优的动作,且评估的时候不需要更新Q。
评估主要是进行五十次然后评估5次,求5次的平均值,这样只看评估值不看训练值就行。

def evaluate(env, agent, render=False):
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        episode_reward = 0
        while True:
            action = agent.predict(obs)  # 预测动作,只选最优动作
            obs, reward, done, _ = env.step(action)
            episode_reward += reward
            if render:
                env.render()
            if done:
                break
        eval_reward.append(episode_reward)
    return np.mean(eval_reward)

2.4 整体代码和运行结果

整体的代码和运行情况可以看这个https://aistudio.baidu.com/aistudio/projectdetail/3830224

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值