介绍
在实际使用ADC时,由于ADC并非理想ADC,所以我们在使用时要根据不同项目设计需求对ADC器件进行选型。在这之前,了解ADC的性能指标能帮助我们选择更为合适的ADC器件。
1.基本参数
1.1分辨率
分辨率是ADC最基本的参数,可以用表示每个模拟信号值的位数(二进制)来表示。一个4位ADC能表示16个不同的模拟信号值,因为2的4次方是16。位数越多,转换的精度越高,分辨率也就越大。注意,ADC的精度并不仅仅取决于分辨率。
1.2采样速率
这里说的采样速率就是我们最高的ADC采样频率,也就是数据手册中的Maximum Sampling Frequency。ADC的采样速率等于或者小于转换速率,常用单位是 ksps 和 Msps,表示每秒 采样千/百万次(kilo / Million Samples per Second)。如图1所示为ADS1255的采样速率
图1.ads1255采样速率
1.3转换时间
转换时间的导数就是转换速率。积分型 AD 的转换时间是毫秒级属于低速 AD,逐次比较型 AD 是微秒级属中速 AD,全并行/ 串并行型 AD 可达到纳秒级。转换时间是衡量一个ADC是不是高速的主要指标,高速ADC转换时间小于1us,低俗ADC转换时间大于300us。
在一些特定的情况下,采样速率可以等于转换速率。这种情况通常发生在以下两种情况下:
-
简单的ADC设计:对于一些简单的ADC设计,采样速率和转换速率可以相等。这意味着ADC在每个转换周期中都会采样模拟信号的一个样本,并将其转换为数字信号。这种设计适用于一些低速或低要求的应用,其中采样速率和转换速率不需要过高的精度或频率响应。
-
同步采样:在一些应用中,需要同时采样多个模拟信号,并将它们转换为数字信号。在这种情况下,ADC的转换速率可以等于每个通道的采样速率的总和。例如,如果有一个四通道的ADC,每个通道的采样速率为1 kHz,那么总的转换速率可以达到4 kHz,其中每个通道在每个转换周期中都会被采样一次。
2.静态精度
静态误差,即ADC在转换DC(直流)信号时影响转换器精度的误差。主要可以分为四个方面:偏置误差、增益误差、积分非线性误差、微分非线性误差。大小可以用LSB(最低有效位)单位或者FSR(满量程输入范围)表示。例如对于一个12位的ADC,1LSB对应0.24‰FSR。
2.1偏置误差
如图1列举了一个偏置误差为1LSB的3位ADC器件的转换特性图。Y轴对应输出的码字,X轴对应模拟信号输入大小。
图2.A/D转换特性图
理想的A/D转换函数是一条过原点的一次函数,实际上是阶梯函数。由于偏置误差的原因,阶梯函数会往X轴偏移。偏置误差的大小等于过阶梯函数的直线与X轴交点的横坐标。在图中为12.5%FSR,对于3位分辨率ADC等效于1LSB。
图3.ADS1115(左)与ADS1256(右)数据手册中的偏置误差
图3列举了两款Dltea-sigma型ADC的数据手册中标注的偏置误差。ADS1115的偏置误差典型值为±1LSB,ADS1256由于内部有校准功能,其偏置误差取决于系统噪声水平的大小。
2.2增益误差
如图4列举了一个具有增益误差的为的3位ADC器件的转换特性图 ,从图中可以看出增益误差可以描述为过阶梯函数的直线与过理想ADC阶梯函数的直线,在满量程处的偏差。常用FSR的单位来表示。增益误差由转换参考电压的误差所决定,因为参考值决定了器件的满量程。
图4.正向增益误差
图5列举了ADS1115与ADS1256器件数据手册所标注的增益误差,从数据手册可以看出ADS1115增益误差较大,最大值为0.15%FSR。ADS1115为16位ADC,意味着在满量程输出时,由于增益误差所造成的误差可以达98LSB(1LSB≈62.5uV)。而ADS1256为24位ADC,校准后增益误差为±0.005%FSR,满量程输出时由于增益误差的影响会造成838LSB误差(1LSB≈0.596uV)。
图5.ADS1115(左)与ADS1256(右)数据手册中的增益误差
2.3微分非线性
微分非线性通常用来描述在转换过程中发生码字跳转处的输入电压与理性转换电压之间偏差的大小。每一个码字的转换应该发生在等效于一个最低有效位(LSB)的间隔内。如图6所示,例如一个3位的ADC,如果第一次发生转换在1/8FSR处,那么理想情况下,第二次应该在2/8FSR处,对于一个特定的码字,偏离理想转换的误差就是非线性误差。对于一个转换器来说,非线性误差是转换过程中最坏情况的转换误差。
图6.微分非线性
当用最低有效位来衡量ADC的分辨率时,如果微分非线性误差大于等于-1LSB的话就意味着有一个码丢失了。一般情况下,无丢失码精度等于ADC转换精度,即位数。少数情况下无丢失码精度小于给定ADC转换精度。在数据手册可以看出,ADS1115和ADS1256的无丢失码精度都等于ADC转换精度,即两款ADC的微分非线性误差小于1LSB,如图7所示。
图7.ADS1115(左)与ADS1256(右)数据手册中的微分非线性
2.4积分非线性
积分非线性用来描述ADC转换函数的整体形状,是ADC中偏离所选直线(理性、最佳或者终点)的最大偏移度量。
图8.参考所选直线终点(左)和参考所选最佳直线(右)积分非线性
从数据手册可以得知ADS1115的积分非线性误差为1LSB,ADS1256器件为0.0003%FSR,即50LSB,如图9所示。
图9.ADS1115(左)与ADS1256(右)数据手册中的积分非线性
3.动态指标
对于用于交流信号(AC)采样的ADC来说,我们更关注其可重复性,即频域特性。ADC的INL会显著的影响ADC输出的总谐波失真(THD),采样抖动会显著影响ADC的信噪比(SNR),我们常用的评价高速ADC性能优良的几个指标就是采样率、输入-3dB带宽、无杂波动态范围(SFDR)、SNR、使用有效位数(ENOB) 。动态指标是在频域中来表征的,通常要利用快速傅里叶变化(FFT)来得到动态规则。
3.1无杂波动态范围(SFDR)
ADC中的SFDR定义为:在输出频谱中,基频分量与最大谐波间的距离(dBC),表示在杂散分量干扰基本信号失真之前可用的动态范围,可由公式(1)来计算
(1)
图10.FFT频域图
图10所示为一个FFT变换后的频域图,这个特定的FFT来自于ADS850器件,该器件14位,采样频率位10MHz。输入测试的信号频率为2.35MHz正弦波。其中B的大小即为SFDR的大小。ADC器件的SFDR常受到输入信号的二次或者三次谐波所限制。但是通过精心设计滤波器和优化频率分配,一般可以避免二次谐波(HD2)和三次谐波(HD3)从而大幅提高SFDR。SFDR的单位为dBc(相对于基波频率幅度)或者dBFS(相对于数据转换满量程范围)。因此在比较SFDR大小时,常注明基准电平及其工作和信号的条件。
3.2总谐波失真(THD)
英文全名是Total Harmonic Distortion,这个参数比较常见,输入信号与系统所有谐波的总功率比。指输出信号比输入信号多出的谐波成分。谐波失真是系统不完全线性造成的。所有附加谐波电平之和称为总谐波失真。总谐波失真与频率有关。一般说来,1000Hz频率处的总谐波失真最小。ADC输出中的谐波失真是由ADC特性中存在的任何非线性引起的。每个实用的ADC都具有非线性特性。结果,每个实际ADC的输出中都存在谐波。DNL和INL是ADC特性非线性的量度,而THD是ADC输出中产生的谐波失真的量度。
3.3信噪比(SNR)
ADC的噪声性能用信噪比SNR来描述。SNR中的S是输入信号的有效功率,N是奈奎斯特频带范围内除了直流分量和基频以外的所有谐波有效功率之和。理论上SNR=6.02n+1.76,n指分辨率。在一个ADC中可以接受的SNR值可以通过下列规则来计算:将分辨率乘以6.例如,对于一个8位的ADC转换器,那么一个好的SNR是48dB,对于12位的ADC,那么一个好的SNR是72dB。因为在高分辨率的ADC中1/f噪声难以降低,在这些高分辨率转换器中很难确保6倍准则。在高分辨率ADC,SNR值依赖于输入信号频率。随着输入频率的增加,SNR的值会下降。
在SNR中是不讲谐波能量计算到噪声中的。而SINAD(信号与噪声加谐波失真)会讲谐波的功率包括在噪声中。
因此SINAD的值肯定小于SNR的值。我们还可以利用SINAD来估算ADC的有效位数(ENOB)