扩展欧几里得 解方程小记

本文详细介绍了扩展欧几里得算法,用于求解ax+by=gcd(a, b)的整数解,并探讨了其在解决实际问题如包装弹球问题中的应用。算法通过递归和回溯找出解之间的关系,进而得到通解公式。在包装弹球问题中,通过求解最小x或y来确定最经济的方案。" 112412757,10543536,Taro开发RN实践:挑战与未来,"['Taro框架', 'RN开发', '组件化', '跨端重构', '移动开发']
摘要由CSDN通过智能技术生成

本来以前学习的时候就懵懵懂懂,长时间不用就完全不会了。。


首先对于扩展欧几里得,对于最一般的方程形式 ax+by=gcd(a,b),此方程一定有整数解,扩展欧几里便得能够求出其中的一组整数解x0,y0。


对于欧几里得的代码:

int gcd(int a,int b)
{
    if(b==0)
        return a;
    return exgcd(b,a%b);
}
在这个代码中,有一个很重要的性质:gcd(a,b)== gcd(b,a%b)

推广到方程 ax+by=gcd(a,b)中,得到 bx+(a%b)* y=gcd(a,b)。这是一定成立的。

然后通过不断的递归,最后会得到 0*x+gcd(a,b)* y=gcd(a,b),对于此时,x可以为任何值,y只能等于1。因为只需要得到一组可行的整数解,所以此时为了方便可以将x取0。

最后在代码回溯时,对于当前方程 m*x1+n*y1=gcd(a,b) (重新假设两个未知量m,n避免混淆),和下一层的方程 n*x2+(m%n)* y2=gcd(a,b)。对于形式 m%n,用m-m/n*n(整数除法)代替,然后上面两式相等,可以如下化解:

n*x2+(m-m/n*n)*y2=m*x1+n*y1
n*x2+m*y2-m/n*n*y2=m*x1+n*y1
m*y2+n*(x2-m/n*y2)=m*x1+n*y1

于是得到关系式:x1=y2y1=x2-m/n*y2,即得到了递推中每两层解之间的关系式。


最后,根据上面的推导,在欧几里得的代码中添加一些语句即可得到扩展欧几里得的代码:

int x,y;
int exgcd(int a,int b)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int gcd=exgcd(b,a%b);
    int mid=x;
    x=y;
    y=mid-a/b*y;
    return gcd;
}

到了这一步,即得到了方程 ax+by=gcd(a,b) 的一组整数解 x0,y0。

对于x和y的所有整数解,假设x0与相邻的一个解x1相差m,y0与相邻的一个解y1相差n,即得:

a*(x+m)+b*(y+n)=gcd(a,b)
a*x+b*y+a*m+b*n=gcd(a,b)
am+bn=0
m=-(b/a)*n

由于求解的是整数解,所以m和n一定是使等式满足的最小整数(因为必须表示所有整数解,所以m和n的绝对值必须最小),而 b/a 不一定为整数,可以推出 m=b/gcd,

n=-a/gcd。

所以 ax+by=gcd(a,b) 的通解为:

x=x0+b/gcd(a,b)*t(t为任意整数)

y=y0-a/gcd(a,b)*t(t为任意整数)

而对于一般式 aX+bX=c ,不同于一定有整数解的ax+by=gcd(a,b),aX+bX=c  只有在c%gcd(a,b)=0 时,有整数解。

求解 aX+bX=c 时,可以直接由 ax+by=gcd(a,b) 的特解 x0,y0 乘以c/gcd(a,b)得到 aX+bX=c 的一组特解 X0,Y0,同理可以得到通解为:

X=X0+b/gcd(a,b)*t(t为任意整数)

Y=Y0-a/gcd(a,b)*t(t为任意整数)



对于应用,感觉扩展欧几里得用的比较多的是求解x或者y满足方程 ax+by=c 中的最小值,比如此题:

 2476: 包装弹球

Time Limit: 1000MS Memory Limit: 65536KB
Total Submit: 6 Accepted: 1 Page View: 366
Submit  Status  Discuss
工厂里生产力n个弹球,有两种盒子A和B进行包装这些弹球。A每个盒子可以装入c1个弹球,花费为t1。B每个盒子可以装入c2个弹球,花费为t2。现在要用A和B包装全部的弹球,并且不浪费盒子空间(用过的盒子只能装满),怎样装才能使得花费最少。
多组测试数据
第一行输入一个n代表有n(1<=n<=2,000,000,000)个弹球。
下面输入4个正整数t1,c1,t2,c2(c1,t1,c2,t2<=2,000,000,000)。
每组数据如果有答案即输出一个整数代表最小的花费。否则输出“No”。
43
1 3
2 4
40
5 9
5 12


就这道题来说,设A用了x个,B用了y个,可以列出方程 c1*x+c2*y=n,然后对于最后的花费cost,可以得到 cost=t1*x+t2*y。

对于cost,可以很容易想到,如果A盒子更划算,我们就用最少的B盒子,即y最小。反之,求x最小。

这样来说的话,问题就变成了求 c1*x+c2*y=n 这个方程中的最小x正整数解或者最小y正整数解,就是扩展欧几里得的简单应用。


代码:

#include"iostream"
#include"cstring"
#include"cstdio"
#include"string"
#include"vector"
#include"cmath"
#include"queue"
#include"map"
#include"set"
#include"algorithm"

#define MAXN 10005
#define lson id<<1
#define rson id<<1|1
#define LL long long
#define INF 0x7f7f7f7f
#define mod 1000000007

const double eps = 1e-10;
const double PI = 2.0*asin(1.0);

using namespace std;

LL x,y;
LL exgcd(LL a,LL b)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    LL gcd=exgcd(b,a%b);
    LL mid=x;
    x=y;
    y=mid-a/b*y;
    return gcd;
}
int main(void)
{
    LL n,t1,t2,c1,c2;
    while(~scanf("%lld%lld%lld%lld%lld",&n,&t1,&c1,&t2,&c2))
    {
        LL gcd=exgcd(c1,c2);
        if(n%gcd!=0)
        {
            printf("No\n");
            continue;
        }
        x=x*n/gcd;
        y=y*n/gcd;
        if((double)c1/(double)t1<=(double)c2/(double)t2)//判断A和B哪一个更划算
        {
            x=x%(c2/gcd);
            if(x<0)
                x+=c2/gcd;
            y=(n-c1*x)/c2;
        }
        else
        {
            y=y%(c1/gcd);
            if(y<0)
                y+=c1/gcd;
            x=(n-c2*y)/c1;
        }
        if(x>=0&&y>=0)
            printf("%lld\n",t1*x+t2*y);
        else
            printf("No\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值