欧几里得算法及求解ax + by = 1方程(a,b互质)的证明及代码演示

欧几里得算法又称作辗转相除法,作用是求解两个整数的最大公因数的方法


 欧几里得算法怎么用?

假定我们在计算机中求a, b两个数的最大公因数,可以自定义一个函数 gcd (a, b) ,该函数的返回值 c 代表a, b的最大公因数,那么根据欧几里得算法,我们可以将返回值 c 用 gcd ( b, a % b)来表示(证明在下文),也就是说,a,b的最大公因数也是 a 与 a % b 的最大公因数,之后我们不断向下迭代,直到gcd( x, 0 )时,x 的值就是 a,b的最大公因数,即 c = x。


 如何证明gcd(a, b)= gcd(b, a % b)呢?

证明比较繁杂,请读者一定要配合纸笔进行同步计算。

首先我们需要明确这样的一个式子:

a➗b = k ...... r( k是商,也可以看成是a/b向下取整,r是余数)    一定要记住这个式子,在接下来的证明中很重要!)

我们依旧设定 gcd(a, b)为a,b的最大公因数,这个最大公因数为 c 。

 那么可知:c = gcd(a, b)

因此可推:

a = cx                         <1>

b = cy                         <2>

且 x 和 y 互质,为什么呢?如果x与y之间有因数,那吗c就不是最大公因数了,与最一开始的设定相违背。

那么我们再看a % b的值:

a % b = r = a - k * b(由红字公式推导而来)

将a = cx, b = cy,带入得:cx - kcy = r

将c提出,化简为:

c(x - ky) = r                        <3>

由此可见,c 也是 r 的因数,我们之前设定的 c 为 a 和 b 的最大公因数,a➗b的余数为 r ,现在可以得到结论:

余数r中,同样包含a和b的最大公因数c 

 那 a 和 b 的最大公因数 与 b 和 a % b 的最大公因数不就都是 c 吗?由此得证。


补充证明:其实在上面的证明中我们忽略了一个点,我们怎么证明<2><3>两个式子中的c是同一个c呢?我们只要证明<2> 中的 y 和<3> 中的 x - ky 是互质的就可以了。


接下来我们就进入到了第二阶段的证明:

如何证明 y ,与 x - ky 是互质的?

我们仍然可以设 gcd(x - ky , y)= d ,假定两者有最大公因数 d。

同第一阶段证明一样:

x - ky    =       md                        <4>

    y       =       nd                         <5>

 n,m一定互质,原因同 x,y 互质的原因相同。

对于式子<4>:移项:

x = md + ky

将<5>式中y带入:

x = knd + md = d ( kn + m )            <6>                         //m,n为正整数

现在已经得到了x,y的两个新的表现形式,将他们带入<1><2>式中,重新对a,b进行表示:

a = cd ( kn + m )

b = cnd

由此可知a,b会有一个公因数 cd。

也就是说 gcd(a, b)>= cd (当c不是最大公因数时,gcd(a,b)有可能大于cd),由于前面我们的设定为gcd(a,b)= c,替换之后为

c >= cd

由此可知 d = 1,即 y ,与 x - ky 是互质的,由此证毕。

这个算法放在代码中很好实现:

#include<stdio.h>

int gcd(int a,int b){
    return b ? gcd(b, a % b) : a;
}

int main(){
    int a, b;
    scanf("%d%d", &a ,&b);
    printf("%d\n",gcd(a,b));
    return 0;
}

如何用欧几里得算法的特性解 ax + by = 1 这样类型的方程呢?

我们先来思考一个问题:

如果b = 0,a 已知的话,是否 x 的值就确定了呢?

答案是肯定的,x的值一定等于a分之1。

问题就来了,这和欧几里得算法,和 gcd 求最大公因数有什么样的联系呢?

回想一下gcd的截止条件:

当 b 为 0 时,返回 a 的值

是不是和上面的特殊情况有些相似?

  如图,第一层代表原始方程,最后一层代表特殊解,也就是当q为0的情况。

现在如果想象我们对原始方程ax + by = 1中的a,b递归求gcd(a,b)的话,当递归到最后一层时,会不会同样也能得到一组特殊解x,y呢?当然x的值由a的值决定,而y可以是任意值。

这里设定x和y的两个系数p,q用来代表递归过程中gcd的两个参数(p,q)。

我们要知道,递归算法是依据栈完成的,也就是说,当最后一层gcd(p,0)得到最终答案x时,返回值就会开始回溯。不断返回,直到最一开始调用的gcd为止(栈空)。

在回溯的过程中,我们会对每一层的的p和q都了如指掌。因为最后一层的p是确定的。

既然如此,我们是否可以根据每一层的系数p,q,解出对应的x,y呢?这样当我们回溯到原始方程的系数时,对应的x,y也就解出了。

显然还不行,因为一个方程有两个未知量x,y,我们只是知道他们的系数还不足以解出答案。

怎么办?

当我们递归到最后一层时,一定会求出x的值,我们能否找到一个关系,使得本层的x与上一层的值x或y其中一个未知量产生对应关系式而求解出上层一个变量呢?这样我们就可以不断求解和回溯,直到求出原始方程的解了。


如何求出每层x的上层x或y的关系?

 证明方法如上。

由此可见上一层的x,y是有对应关系的,关系在上图最后两行(= =)。

接下来上代码:

#include<stdio.h>

int ex_gcd(int a, int b, int *x, int *y){//注意,a,b必须互质!
    if(b == 0){
        *x = 1;
        *y = 0;
        return a;
    }
    int x1, y1, r;
    r = ex_gcd(b, a % b, &x1, &y1);
    *y = x1 - a / b * y1;          //根据推导的每层x,y的关系而来
    *x = y1;                       //同上
    return r;
}

int main(){ 
   int a, b, x, y;
    while(~scanf("%d%d", &a, &b)){
        int ret = ex_gcd(a, b, &x, &y);
        printf("x : %d, y : %d, ret = %d\n", x, y, ret);//其实ret就是a,b的最大公约数
        printf("%d * %d + %d * %d = %d\n", a, x, b, y, a * x + b * y);
    }
    return 0;
}

关于为什么a,b一定互质的原因:

其实我们的这个算法是根据扩展欧几里得算法而来的:

简单来说可以用下面的公式来表示:

gcd (a,b) = ax + by

而 1 就是一种特殊情况,当gcd (a, b) = 1时,也就是a,b互质时,才会有这种情况。


读者可以思考思考欧几里得扩展算法的作用,想想实际应用。

欢迎评论区提问!如有错误恳请指正!

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
我们可以使用扩展欧几里得算法求解此问题。该算法可以在求解形如 $ax+by=gcd(a,b)$ 的不定方程时使用。 我们将该方程变形为 $233x = 1 - 1559173440y$,然后将其转化为形如 $ax+by=gcd(a,b)$ 的不定方程。令 $a=233$,$b=1559173440$,则有: $$ \begin{aligned} gcd(233, 1559173440) &= gcd(233, 1559173440 \bmod 233) \\ &= gcd(233, 39) \\ &= gcd(39, 233 \bmod 39) \\ &= gcd(39, 17) \\ &= gcd(17, 39 \bmod 17) \\ &= gcd(17, 5) \\ &= gcd(5, 17 \bmod 5) \\ &= gcd(5, 2) \\ &= gcd(2, 5 \bmod 2) \\ &= gcd(2, 1) \\ &= 1 \end{aligned} $$ 因此 $233$ 和 $1559173440$ 互质,即 $gcd(233,1559173440)=1$。根据扩展欧几里得算法,我们可以求出 $233x+1559173440y=1$ 的一组解 $(x_0,y_0)$。 具体来说,我们可以从最后一个等式 $2\times1+5\times(-2)=1$ 开始,依次向前计算,得到: $$ \begin{aligned} 1 &= 2\times1+5\times(-2) \\ &= 17\times(-2)+39\times5 \\ &= 39\times5+233\times(-1) \end{aligned} $$ 因此,$(x_0,y_0)=(-1,5)$ 是 $233x+1559173440y=1$ 的一组解。 注意到 $233$ 是正整数,因此我们需要找到一组解 $(x,y)$,使得 $x>0$。由于 $233$ 和 $1559173440$ 互质,我们可以得到另一组解 $(x_1,y_1)$,满足 $x_1=x_0+k\times b$,$y_1=y_0-k\times a$,其中 $k$ 是任意整数,$a=233$,$b=1559173440$。 我们可以将 $k$ 从 $1$ 开始依次增加,计算出一组组解 $(x_k,y_k)$,直到 $x_k>0$。具体来说,我们有: $$ \begin{aligned} x_1 &= x_0+b = -1+1559173440 = 1559173439 \\ y_1 &= y_0-a = 5-233 = -228 \\ x_2 &= x_1+b = 1559173439+1559173440 = 3118346879 \\ y_2 &= y_1-a = -228-233 = -461 \\ \cdots \\ x_{6721925} &= x_{6721924}+b = 1559173440\times 6721925 = 10493481709600 \\ y_{6721925} &= y_{6721924}-a = -233\times 6721925 = -1565426925 \\ \end{aligned} $$ 因此,$(x,y)=(10493481709600,-1565426925)$ 是满足要求的一组解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若亦_Royi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值