欧几里得、扩展欧几里德及其应用(解不定方程、求逆元)www

一、欧几里得算法(中国叫辗转相除法):gcd(a,b)=gcd(b,a%b)

证明:
设 da、b 的公因数(或公因子)则有

d|a、d|b

(根据整除定义)存在q_1、q_2使得

a=q_1*d、b=q_2*d---------------式1

又因为对于整数a、b可写成,存在q使得b=aq+r (r=a%b)

所以

b=aq+r,左右两边用式1代入,可得

q2*d=q1*d*q+r

r=q2*d-q1*d*q=(q2-q1*q)*d

d|r,也就是d|(a%b)

得到结论一:a、b的公因子也是b、a%b的公因子

反之:设mb、a%b的公因子,是有

m|b、m|r

(根据整除定义)存在p1、p2使得

b=p1*m、r=p2*m

又因为对于整数a、b可写成

a=bp+r (r=a%b)

所以

a=p1*m*p+p2*m=m(p1*p+p2)

m|a

得到结论二:b、a%b的公因子也是a、b的公因子

根据结论一和结论二可得出a、b的全体公因子集合与b、a%b的全体公因子集合相同,当然最大公约数也相同,即gcd(a,b)=gcd(b,a%b),证毕。

代码如下:

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

二、扩展欧几里德算法  求解ax+by=gcd(a,b)

算法核心思想:

利用欧几里得算法递归到最深层时得到的x,y的解再一层一层(返回时)递推回去得到初始方程的解。

解释如下:

不妨设a>b

当欧几里得算法递归到最深层时,此时满足条件b==0已经到达递归边界准备返回上一层;

又因为b=0、gcd(a,b)=a,代入方程ax+by=gcd(a,b)得到a*x+b*0=a,

所以解为x=1(因为b=0,所以y随意,不妨为0,下面会有解释),

将x=1,y=0这个解同时返回上一层,有什么用呢?看下面的推导:

当a=0时,情况和上面一样(自己想一想为什么),所以第二种情况是当a*b!=0时(注意此时的情况按欧几里得应该是向下递归的):此句含义不明,建议先不要看

假设x0,y0是方程a*x+b*y=gcd(a,b)(第0层)的解,

则有a*x_0+b*y_0=gcd(a,b)--------------A式

(另由a*x+b*y=gcd(a,b)可以把a换成b、b换成a%b等式同样成立,则有b*x+a%b*y=gcd(b,a%b)此句也是云里雾里,建议先不要看!

假设x1,y1是方程b*x+a%b*y=gcd(b,a%b)的解,

则有b*x1+a%b*y1=gcd(b,a%b)----------------B式

由欧几里得算法可知,gcd(a,b)=gcd(b,a%b),即A式和B式右边相等,所以A式和B式的左边也相等,即:

a*x0+b*y0=b*x1+a%b*y1
                 =b*x1+(a-a/b*b)*y1
                 =b*x1+a*y1-a/b*b*y1
                 =a*y1+b(x1-a/b*y1) 

观察式子的左右两边,根据恒等原理:x0=y1   y0=x1-a/b*y1 

这就告诉我们第0层的结果可由第1层的结果递推得到,

那第1层的就可以由第2层的递推得到x1=y2,y1=x2-a/b*y2,……。

所以:x_i=y_{i+1}   y_i=x_{i+1}-a/b*y_{i+1}

直至推到欧几里得算法递归最深层,不妨设此时到了第n层,

此时方程为a_nx_n+b_ny_n=gcd(a_n,b_n),并且根据欧几里得算法,此时b_n=0,则x_n=1,y_n=0可以使a_nx_n+b_ny_n=gcd(a_n,b_n)成立,

然后顺着递归回溯的过程

并根据上面的x_i=y_{i+1}   y_i=x_{i+1}-a/b*y_{i+1} 将 x_n=1,y_n=0 返回给上层生成 x_{n-1} 和 y_{n-1},再计算再返回,再计算再返回……直至得到 x_0 和 y_0 ,就得到了最初的方程a*x+b*y=gcd(a,b)的解了。 

int exgcd(int a,int b,int &x,int &y){
    if (b==0){
        x=1;
        y=0;
        return a;
    }
    int d=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return d;
}

对于方程ax+by=gcd(a,b)来说,上述方法得到的解x0,y0明显只是其中一个解,我们称之为特解。

注意到我们在扩展欧几里得算法中是运用欧几里得算法递归到b==0的时候得到一个解x0=1,y0=0的,这个y0其实还可以是任意正整数,那么对于ax+by=gcd(a,b)来说,就必然通过其它的x0=1和y0得到另一个解,也是由于这个原因,我们把上面的X0和y0称为一个特解,所以接下来的问题是怎么表示ax+by=gcd(a,b)这个方程的所有解(我们称之为通解)呢?

我们有了特解:x0,y0,则ax0+by0=gcd(a,b),注意到gcd(a,b)是一个不变的常数,方程的左边又是两个整数相加,那么对于ax0加上一个整数、y0减去同一个整数,左边还是等于右边

ax0增加一些必然是a不变,x0变,增加的是a的倍数,同理by0减少一些,必然是减少b的倍数,要使增加减少一样多,必定是增加和减少的都是lcm(a,b)的倍数

即ax0+k*lcm(a,b)+by0-k*lcm(a,b)=gcd(a,b)对比ax+by=gcd(a,b)就可以得到:ax=ax0+k*lcm(a,b)和by=by0-k*lcm(a,b) (其中k取整数)

所以通解就是x=x_0+\frac{k*lcm(a,b)}{a}=x_0+\frac{a*b}{gcd(a,b)}*\frac{k}{a}=x_0+\frac{b*k}{gcd(a,b)}         y=y_0-\frac{k*lcm(a,b)}{b}=y_0-\frac{a*b}{gcd(a,b)}*\frac{k}{b}=y_0+\frac{a*k}{gcd(a,b)}    (其中k取整数)

三、扩展欧几里得求解不定方程ax+by=c:

第一步:不定方程ax+by=c有整数解的条件是gcd(a,b)|c

第二步:先用扩展欧几里得求出ax+by=gcd(a,b)的特解x0,y0

第三步:不定方程ax+by=c的解就是x=\frac{x_{0}*c}{gcd(a,b)}        y=\frac{y_{0}*c}{gcd(a,b)}

理由如下:因为由ax+by=gcd(a,b)的特解x0,y0可得:ax_0*c+by_0*c=gcd(a,b)*c ,左右两边同时除以gcd(a,b)可得:

\frac{ax_0c}{gcd(a,b)}+\frac{by_0c}{gcd(a,b)}=c

改一下

a\frac{x_0c}{gcd(a,b)}+b\frac{y_0c}{gcd(a,b)}=c

对比ax+by=c可得

x=\frac{x_{0}*c}{gcd(a,b)}    y=\frac{y_{0}*c}{gcd(a,b)}

得证。所以ax+by=c的特解就可以通过ax+by=gcd(a,b)的特解x0,y0由上式得到。

那么通解呢?

x=\frac{x_{0}*c}{gcd(a,b)}+\frac{kb}{gcd(a,b)}        y=\frac{y_{0}*c}{gcd(a,b)}-\frac{ka}{gcd(a,b)}

如果也要求x的最小正整数解,则同样(x%b/gcd+b/gcd)%b

四、扩展欧几里得的应用之求解线性同余方程ax≡c(mod b):

根据同余的定义,ax≡c(mod b)相当于ax mod b=c

根据模运算定义,相当于存在y,使得ax-by=c,也即ax+b(-y)=c

那么求出不定方程ax+by=c中的x的解就是同余方程ax≡c(mod b)的解,解法同第三点。

五、扩展欧几里得求解逆元ax≡1(mod b):

1、乘法逆元的定义:如果gcd(a,p)=1,且ax≡1 (mod p),则称x为a模p的乘法逆元。

2、(为什么叫逆元?)乘法逆元的重要应用:如果要求a/b (mod p),在确定gcd(b,p)=1先决条件下,可以先求出b在模p条件下的乘法逆元(设为x),则求a/b (mod p)转换成求a*x (mod p)的值。(千万不要被这里的字母a,b,p给绕晕了)

3、乘法逆元的表示方法:类似于数学中的规则,\frac{a}{b}=a*b^{-1},因为我们上面设了b在模p情况下的乘法逆元是x ,则b^{-1}=x

也即b在模p情况下的乘法逆元记为b^{-1},程序中一般用inv[b]表示b的逆元。

4、扩展欧几里得求逆元的方法:

由ax≡1 (mod p)可得:ax mod p=1→存在y使得ax-py=1重点是x的解,所以也可写成ax+by=1,用扩展欧几里得算法求解即可。

编程提示:

①从之前的扩展欧几里得求解不定方程可知,解不止一个,或者说a的逆元是不是有多个?需要考虑其他的解吗?答案是:不用。因为x的通解x=\frac{x_{0}*c}{gcd(a,b)}+\frac{kb}{gcd(a,b)}一定是在x的基础上加上了p的倍数(公式中的b),这些p的倍数在mod p的情况下就为0了。

②前面的方法不一定能保证求到的x一定是最小的正整数,但是如果题目要求是最小正整数,我们可以(x%p+p)%p,就可以了。(为什么要+p?因为有可能x是个负数!)

5、快速幂+费马小定理求乘法逆元

费马小定理:当p是质数、a是正整数,且gcd(a,p)=1时,a^p\equiv 1(mod p)\Rightarrow a*a^{p-2}\equiv1(modp),根据逆元定义,a^{p-2} 即为a mod p意义下的逆元,用快速幂ksm(a,p-2,p)即可求,过程略!时间复杂度为O(nlogn)。

6、递推求逆元

同余的定义是:a和b模p同余,则有a%p=b%p记为a≡b(mod p)

对于ax≡1(mod p)中的a,p,根据带余除法定义有:p=k*a+r其中r∈[0,p)

因为左边p%p=0,则右边(k*a+r)%p=0 ⟹ k*a+r≡0(mod p)

记a的逆元为inv[a],r的逆元为inv[r]

上式两边同时乘以inv[a],inv[r]则有:

(k*a+r)*inv[a]*inv[r]≡0*inv[a]*inv[r](mod p)≡0(mod p)

⟹ k*a*inv[a]*inv[r]+r*inv[a]*inv[r]≡0(mod p)

⟹ k*inv[r]+inv[a]≡0(mod p)

⟹ inv[a]≡-k*inv[r](mod p)

又因为p=k*a+r,所以k=\left \lfloor\frac{p}{a} \right \rfloor(取下界)、r=p%a,代入上式得

inv[a] \equiv -\left \lfloor \tfrac{p}{a} \right \rfloor \ast inv[p mod a] mod p

又因为(p%i)<i,则可由inv[p%a]的结果递推出inv[a]

显然求到的inv[a]不一定为最小正整数解,若要得到最小正整数解,加一步:inv[a] \equiv (p-\left \lfloor \tfrac{p}{a} \right \rfloor) \ast inv[p mod a] mod p

观察p%a的值的范围是[0,a),又因为p为质数,故范围为[1,a)

也即p最小为1,又因为1*1≡1(mod p),所以1的逆元还是1,这样就可以递推出a的逆元了。

代码:

ll inv[1]=1;

for (int i=2;i<=a;i++)inv[i]=(p-p/i)*inv[p%i]%p

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值