很容易想到最多只需要添加3条边。
1.如果M==0,那么任选三个点连接3条边
2.如果所有连通分量大小均小于等于2,那么任选一个连通分量和一个点连2条边
3.如果本身存在奇圈(DFS过程中父节点和子节点颜色一样),那么答案是0 1
4.除此以外所有情况均可以只连一条边。
把图在DFS的过程中按照一黑一白染色,那么同一连通分量中的相同颜色的点连线均可构成奇圈。所以DFS时维护一下黑白点的数量即可。
注意,不同连通分量间的点颜色相同也不能连边。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
using namespace std;
#define maxn 100005
#define maxm 100005
#define INF 100000000
#define LL long long
bool vis[maxn];
int N,M;
vector <int> G[maxn];
int odd,even;
bool loop=0;
bool bin=0;
int ps[maxn];
void dfs(int n,int cur){
if(G[n].size()>=2) bin=1;
if(cur&1){ odd++; ps[n]=1;}
else { even++; ps[n]=0;}
for(int i=0;i<G[n].size();i++){
int nw=G[n][i];
if(!vis[nw]){
vis[nw]=1;
dfs(nw,cur+1);
}
if(ps[nw]==ps[n]) loop=1;
}
}
int main(){
scanf("%d%d",&N,&M);
odd=even=0;
for(int i=0;i<M;i++){
int s,t;
scanf("%d%d",&s,&t);
G[s].push_back(t);
G[t].push_back(s);
}
if(M==0){
LL res=1ll*N*(N-1)*(N-2)/6;
printf("3 %lld\n",res);
return 0;
}
LL res=0;
for(int i=1;i<=N;i++){
if(!vis[i]){
vis[i]=1;
odd=even=0;
dfs(i,0);
res+=1ll*odd*(odd-1)/2+1ll*even*(even-1)/2;
}
}
if(loop){ printf("0 1\n"); return 0; }
if(!bin){
printf("2 %lld\n",1ll*M*(N-2));
return 0;
}
printf("1 %lld\n",res);
return 0;
}