cf #311 D. Vitaly and Cycle (二分图染色)

题目:http://codeforces.com/contest/557/problem/D

题意:给定没有自环,没有重边的无向图。问最少添加几条边使得存在有奇数个节点的环。并且求出可行的方案数。

分析:

分情况讨论:

①图里面没有边,都是点,那么最少要加3条边。然后然选3个点作为环的顶点。

②图中最长的链的长度为1,那么最少要加2条边。以已知边最为环的一条边,再在剩余的顶点内选一个顶点。

③图中存在链长大于1的链,且不存在奇数个节点的环,那么最少添加1条边。将每个连通分量进行染色,对于每一个连通分量,假设黑色顶点x个,白色顶点y个,那么方案数就是C(x,2)+C(y,2)。

④图中存在奇数个节点的环,那么最少添加0条边,有1种方案。

代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
const LL INF = 1E9+9;
const int maxn = 1e6+7;
int n,m;

struct node
{
	int v,next;
}List[maxn];
int head[maxn],cnt;
bool visit[maxn];
void add(int u,int v)
{
	List[cnt].v=v;
	List[cnt].next=head[u];
	head[u]=cnt++;
}
int cs[maxn];
bool hasOddCycle;

void dfs(int cur,int pre,int len)
{
	if(hasOddCycle)
		return ;
	visit[cur]=true;
	for(int i=head[cur];~i;i=List[i].next)
	{
		int to=List[i].v;
		if(to==pre)
			continue ;
		if(visit[to])
		{
			int num=cs[to]+1+len;
		//	cout<<"num:"<<num<<endl;
			if(num&1)
			{
				hasOddCycle=true;
				return ;
			}
			continue ;
		}
		cs[to]=len+1;
		dfs(to,cur,len+1);
	}
}

int c1,c0;
void color(int cur,int cur_color)
{
//	printf("cur: %d\n",cur);
	cur_color?c1++:c0++;
	visit[cur]=true;
	for(int i=head[cur];~i;i=List[i].next)
	{
		int to=List[i].v;
		if(!visit[to])
			color(to,!cur_color);
	}
} 

int d[maxn];
int main()
{
	int i,j,u,v;
	bool Chain=0;
	scanf("%d%d",&n,&m);
	cnt=0;
	memset(head,-1,sizeof(head));
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&u,&v);
		add(u,v);
		add(v,u);
		d[u]++;
		d[v]++;
		if(d[u]>1 || d[v]>1)
			Chain=true;
	}
	if(m==0)
	{
		printf("3 %lld\n",n*(n-1ll)*(n-2ll)/6ll);
		return 0;
	}
	if(!Chain)
	{
		printf("2 %lld\n",m*(n-2ll));
		return 0;
	}
	for(i=1;i<=n;i++) if(!visit[i])
		dfs(i,-1,0);
	if(hasOddCycle)
	{
		printf("0 1\n");
		return 0;
	}
	LL ans=0;
	memset(visit,0,sizeof(visit));
	for(int i=1;i<=n;i++) if(!visit[i]) 
	{
		c1=c0=0;
		color(i,1);
	//	printf("c1: %d  c0: %d\n",c1,c0);
		ans+=c1*(c1-1ll)/2ll+c0*(c0-1ll)/2ll;
	}
	printf("1 %lld\n",ans);
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值