题目:http://codeforces.com/contest/557/problem/D
题意:给定没有自环,没有重边的无向图。问最少添加几条边使得存在有奇数个节点的环。并且求出可行的方案数。
分析:
分情况讨论:
①图里面没有边,都是点,那么最少要加3条边。然后然选3个点作为环的顶点。
②图中最长的链的长度为1,那么最少要加2条边。以已知边最为环的一条边,再在剩余的顶点内选一个顶点。
③图中存在链长大于1的链,且不存在奇数个节点的环,那么最少添加1条边。将每个连通分量进行染色,对于每一个连通分量,假设黑色顶点x个,白色顶点y个,那么方案数就是C(x,2)+C(y,2)。
④图中存在奇数个节点的环,那么最少添加0条边,有1种方案。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const LL INF = 1E9+9;
const int maxn = 1e6+7;
int n,m;
struct node
{
int v,next;
}List[maxn];
int head[maxn],cnt;
bool visit[maxn];
void add(int u,int v)
{
List[cnt].v=v;
List[cnt].next=head[u];
head[u]=cnt++;
}
int cs[maxn];
bool hasOddCycle;
void dfs(int cur,int pre,int len)
{
if(hasOddCycle)
return ;
visit[cur]=true;
for(int i=head[cur];~i;i=List[i].next)
{
int to=List[i].v;
if(to==pre)
continue ;
if(visit[to])
{
int num=cs[to]+1+len;
// cout<<"num:"<<num<<endl;
if(num&1)
{
hasOddCycle=true;
return ;
}
continue ;
}
cs[to]=len+1;
dfs(to,cur,len+1);
}
}
int c1,c0;
void color(int cur,int cur_color)
{
// printf("cur: %d\n",cur);
cur_color?c1++:c0++;
visit[cur]=true;
for(int i=head[cur];~i;i=List[i].next)
{
int to=List[i].v;
if(!visit[to])
color(to,!cur_color);
}
}
int d[maxn];
int main()
{
int i,j,u,v;
bool Chain=0;
scanf("%d%d",&n,&m);
cnt=0;
memset(head,-1,sizeof(head));
for(i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
d[u]++;
d[v]++;
if(d[u]>1 || d[v]>1)
Chain=true;
}
if(m==0)
{
printf("3 %lld\n",n*(n-1ll)*(n-2ll)/6ll);
return 0;
}
if(!Chain)
{
printf("2 %lld\n",m*(n-2ll));
return 0;
}
for(i=1;i<=n;i++) if(!visit[i])
dfs(i,-1,0);
if(hasOddCycle)
{
printf("0 1\n");
return 0;
}
LL ans=0;
memset(visit,0,sizeof(visit));
for(int i=1;i<=n;i++) if(!visit[i])
{
c1=c0=0;
color(i,1);
// printf("c1: %d c0: %d\n",c1,c0);
ans+=c1*(c1-1ll)/2ll+c0*(c0-1ll)/2ll;
}
printf("1 %lld\n",ans);
return 0;
}