cf #311 D. Vitaly and Cycle (二分图染色)

题目:http://codeforces.com/contest/557/problem/D

题意:给定没有自环,没有重边的无向图。问最少添加几条边使得存在有奇数个节点的环。并且求出可行的方案数。

分析:

分情况讨论:

①图里面没有边,都是点,那么最少要加3条边。然后然选3个点作为环的顶点。

②图中最长的链的长度为1,那么最少要加2条边。以已知边最为环的一条边,再在剩余的顶点内选一个顶点。

③图中存在链长大于1的链,且不存在奇数个节点的环,那么最少添加1条边。将每个连通分量进行染色,对于每一个连通分量,假设黑色顶点x个,白色顶点y个,那么方案数就是C(x,2)+C(y,2)。

④图中存在奇数个节点的环,那么最少添加0条边,有1种方案。

代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
const LL INF = 1E9+9;
const int maxn = 1e6+7;
int n,m;

struct node
{
	int v,next;
}List[maxn];
int head[maxn],cnt;
bool visit[maxn];
void add(int u,int v)
{
	List[cnt].v=v;
	List[cnt].next=head[u];
	head[u]=cnt++;
}
int cs[maxn];
bool hasOddCycle;

void dfs(int cur,int pre,int len)
{
	if(hasOddCycle)
		return ;
	visit[cur]=true;
	for(int i=head[cur];~i;i=List[i].next)
	{
		int to=List[i].v;
		if(to==pre)
			continue ;
		if(visit[to])
		{
			int num=cs[to]+1+len;
		//	cout<<"num:"<<num<<endl;
			if(num&1)
			{
				hasOddCycle=true;
				return ;
			}
			continue ;
		}
		cs[to]=len+1;
		dfs(to,cur,len+1);
	}
}

int c1,c0;
void color(int cur,int cur_color)
{
//	printf("cur: %d\n",cur);
	cur_color?c1++:c0++;
	visit[cur]=true;
	for(int i=head[cur];~i;i=List[i].next)
	{
		int to=List[i].v;
		if(!visit[to])
			color(to,!cur_color);
	}
} 

int d[maxn];
int main()
{
	int i,j,u,v;
	bool Chain=0;
	scanf("%d%d",&n,&m);
	cnt=0;
	memset(head,-1,sizeof(head));
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&u,&v);
		add(u,v);
		add(v,u);
		d[u]++;
		d[v]++;
		if(d[u]>1 || d[v]>1)
			Chain=true;
	}
	if(m==0)
	{
		printf("3 %lld\n",n*(n-1ll)*(n-2ll)/6ll);
		return 0;
	}
	if(!Chain)
	{
		printf("2 %lld\n",m*(n-2ll));
		return 0;
	}
	for(i=1;i<=n;i++) if(!visit[i])
		dfs(i,-1,0);
	if(hasOddCycle)
	{
		printf("0 1\n");
		return 0;
	}
	LL ans=0;
	memset(visit,0,sizeof(visit));
	for(int i=1;i<=n;i++) if(!visit[i]) 
	{
		c1=c0=0;
		color(i,1);
	//	printf("c1: %d  c0: %d\n",c1,c0);
		ans+=c1*(c1-1ll)/2ll+c0*(c0-1ll)/2ll;
	}
	printf("1 %lld\n",ans);
	return 0;
}


内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值