Hbase数据过滤器之SingleColumnValueFilter

本文介绍了在使用Flink查询Hbase时,如何利用SingleColumnValueFilter实现快速且具有过滤功能的查询。重点强调了在使用多个过滤器时需将它们放入FilterList,并确保扫描的列包含过滤器涉及的字段,同时选择正确的比较器。内容涵盖数据封装、Hbase初始化、DataSet转换及测试类的创建。
摘要由CSDN通过智能技术生成

 当我们使用Flink获取hbase数据的时候,要想使用Hbase实现快速查询的功能,还能有过滤的作用,这时候就需要加入过滤器了,但是多个过滤器之前的使用需要一些注意,百度真的是坑,都是复制的,以下就是SingleColumnValueFilter 需要注意的一些点。

1.我们如果有多个值过滤,可以将每个过滤器加入到FilterList 里面,然后再scan.setFilter(list);

2.注意的细节就是我们使用的每个过滤器里的字段必须要加入到扫描的列值中,scan.addColumn(FAMILY, Bytes.toBytes("tp_gl_day_is_exch_day")),如果不加入里面,这个对应的过滤器就不会起作用。

3.注意比较器的选择,和其他的数据库对应好。

 

1.数据的封装

package com.datamiddle.service.sysRiskAndRAR.hbase

import com.datamiddle.common.BaseService
import com.datamiddle.connect.hbase.HBaseInputFormat
import com.datamiddle.index.common.params.IndexParams
import org.apache.flink.api.scala._
import org.apache.flink.types.Row
import org.apache.hadoop.hbase.CompareOperator
import org.apache.hadoop.hbase.client.{Result, Scan}
import org.apache.hadoop.hbase.filter.{FilterList, SingleColumnValueFilter}
import org.apache.hadoop.hbase.filter.FilterList.Operator
import org.apache.hadoop.hbase.util.Bytes


object HbaseBtCalService {


  def hbaseData(parameter: Map[String, Object], scan: Scan) = {
    /**
     * 开始结束id代表hbase中的rowkey,hbase查询条件必须有rowkey和列族
     */
    if (parameter.contains(IndexParams.STARTID) && parameter.contains(IndexParams.STOPID)) {

//      scan.withStartRow(Bytes.toBytes(parameter.get(IndexParams.STARTID).asInstanceOf[Some[String]].value))
//      scan.withStopRow(Bytes.toBytes(parameter.get(IndexParams.STOPID).asInstanceOf[Some[String]].value))
      val FAMILY = Bytes.toBytes("info") // hbase列族
      val list = new FilterList(Operator.MUST_PASS_ALL) //定义过滤器
 var or=
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

꧁꫞ND꫞꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值