当我们使用Flink获取hbase数据的时候,要想使用Hbase实现快速查询的功能,还能有过滤的作用,这时候就需要加入过滤器了,但是多个过滤器之前的使用需要一些注意,百度真的是坑,都是复制的,以下就是SingleColumnValueFilter 需要注意的一些点。
1.我们如果有多个值过滤,可以将每个过滤器加入到FilterList 里面,然后再scan.setFilter(list);
2.注意的细节就是我们使用的每个过滤器里的字段必须要加入到扫描的列值中,scan.addColumn(FAMILY, Bytes.toBytes("tp_gl_day_is_exch_day")),如果不加入里面,这个对应的过滤器就不会起作用。
3.注意比较器的选择,和其他的数据库对应好。
1.数据的封装
package com.datamiddle.service.sysRiskAndRAR.hbase
import com.datamiddle.common.BaseService
import com.datamiddle.connect.hbase.HBaseInputFormat
import com.datamiddle.index.common.params.IndexParams
import org.apache.flink.api.scala._
import org.apache.flink.types.Row
import org.apache.hadoop.hbase.CompareOperator
import org.apache.hadoop.hbase.client.{Result, Scan}
import org.apache.hadoop.hbase.filter.{FilterList, SingleColumnValueFilter}
import org.apache.hadoop.hbase.filter.FilterList.Operator
import org.apache.hadoop.hbase.util.Bytes
object HbaseBtCalService {
def hbaseData(parameter: Map[String, Object], scan: Scan) = {
/**
* 开始结束id代表hbase中的rowkey,hbase查询条件必须有rowkey和列族
*/
if (parameter.contains(IndexParams.STARTID) && parameter.contains(IndexParams.STOPID)) {
// scan.withStartRow(Bytes.toBytes(parameter.get(IndexParams.STARTID).asInstanceOf[Some[String]].value))
// scan.withStopRow(Bytes.toBytes(parameter.get(IndexParams.STOPID).asInstanceOf[Some[String]].value))
val FAMILY = Bytes.toBytes("info") // hbase列族
val list = new FilterList(Operator.MUST_PASS_ALL) //定义过滤器
var or=