在人工智能领域,数据、计算能力和算法被公认为是推进AI发展的三大核心力量,数据作为最基础要素,是满足算法实现深度学习的重要素材,因此,学习数据的加工质量与效率也自然成为AI企业最关注的话题。
数据质量是否优质可以从三个维度进行考量:泛化性、量级、精度。数据泛化性和量级的获得相对来说比较容易。这归功于国内有许多类似荟萃众包这类的数据采集渠道,AI企业仅需制定明确的数据需求。而数据加工的精度和效率,则很大程度上依托于标记工具系统的灵活性。
倍赛BasicFinder SaaS数据标注工具解决了以下6个实操问题:
1. 一站式全类型数据标注工具
倍赛BasicFinder SaaS数据标注工具集支持对图像数据、文本数据、音频数据、视频数据、点云数据的标注工作,减少工具使用者因不同数据标注需求切换平台的困扰。
2. 流程系统内嵌,适应批量作业。
倍赛BasicFinder SaaS数据标注工具集优化了数据标注的作业流程&#