Lidar 3D传感器点云数据与2D图像数据的融合标注

2D&3D融合

以自动驾驶场景为例,自动驾驶汽车需要使用传感器来识别车辆周围的物理环境,用来捕获2D视觉数据,同时在车辆顶部安装雷达,用以捕捉精确目标定位的3D位置数据。

在这里插入图片描述
激光雷达生成的点云数据可用于测量物体的形状和轮廓,估算周围物体的位置和速度,但点云数据缺少了RGB图像数据中对物体纹理和颜色等信息的提取,无法精确地将对象分类为汽车、行人、障碍物、信号灯等。

所以需要将包括丰富的语义信息2D视觉图像和可以提供精确的目标定位3D点云数据进行融合,使自动驾驶系统能够精确地了解周围环境,准确做出判断,让自动驾驶功能得以广泛应用。

在O1平台2D&3D融合标注界面,点击2D图片上的小眼睛预览按钮,可以看到3D数据高亮的部分,哪个方位的数据会被映射在2D图片上。

在这里插入图片描述

3D框标注

新建3D框

屏幕聚焦在车或目标物体的正上方,点击快捷键F,依次点击左后方,左前方和右前方。平台的自动框收敛的功能可以使3D框完美贴合在目标物体上。

### 支持2D3D融合数据标注工具推荐 在无人驾驶领域,随着技术的发展,2D-3D融合标注逐渐成为主流趋势。为了满足这一需求,市场上已经出现了多种专业的数据标注工具。 #### 1. Point-Cloud-Annotation-Tool Point-Cloud-Annotation-Tool 是一款专注于3D点云数据标注的开源工具,同时也支持2D图像融合标注[^2]。这款工具提供了直观的操作界面,能够通过棋盘格、圆形以及方形等多种方式完成标定工作。对于需要高精度标注的应用场景来说,这是一个非常实用的选择。 #### 2. 景联文科技标注平台 景联文科技提供的专业标注平台不仅支持标2D3D独立标注,还特别强化了对两者融合的支持能力[^3]。其核心优势在于具备自动预处理功能,可以基于初始模型预测结果快速生成初步标签,并允许人工介入修正错误部分。此外,该平台可以根据具体业务逻辑自定义置整个标注流程,从而有效提升了效率并保障最终输出的质量。 #### 3. 自动驾驶专用解决方案 针对自动驾驶行业特有的复杂环境感知需求,某些厂商开发出了专门用于 Lidar 和摄像头协同工作的综合型软件系统[^4]。这类产品通常集成了先进的算法框架,在实现精定位的同时还能增强系统的鲁棒性——即使某个单一传感器发生异常情况也能依靠其他组件维持正常运作状态。 以下是 Python 实现的一个简单示例程序片段展示如何加载两种不同类型文件进行同步可视化: ```python import open3d as o3d from PIL import Image def load_data(image_path, point_cloud_path): img = Image.open(image_path) pcd = o3d.io.read_point_cloud(point_cloud_path) return img, pcd if __name__ == "__main__": image_file = 'example_image.jpg' pcl_file = 'example_pcl.ply' image, pointcloud = load_data(image_file, pcl_file) # 进一步处理... ``` 以上代码仅作为概念验证用途,请根据实际项目需求扩展相应功能模块。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值