前缀和与差分2:矩阵操作

本文介绍了如何在二维矩阵中扩展序列的前缀和与差分概念,通过递推公式计算前缀矩阵和差分矩阵,并应用这些概念解决查询子矩阵和及更新问题,利用序列方法简化计算过程。
摘要由CSDN通过智能技术生成

之前,我们讲了序列上的前缀和与差分,如果没看过请戳这。今天,我们就要把它拓展到二维平面——矩阵。

矩阵中前缀和与差分的定义

前缀和

矩阵 a a a 的前缀矩阵 s s s 表示 a a a 最左上角一块子矩阵的元素总和。确切的讲, s [ i ] [ j ] = a [ 1 ] [ 1 ] + a [ 1 ] [ 2 ] + ⋯ + a [ 1 ] [ j ] + a [ 2 ] [ 1 ] + a [ 2 ] [ 2 ] + ⋯ + a [ 2 ] [ j ] + ⋯ + a [ i ] [ 1 ] + a [ i ] [ 2 ] + ⋯ + a [ i ] [ j ] s[i][j]=a[1][1]+a[1][2]+\dots+a[1][j]+a[2][1]+a[2][2]+\dots+a[2][j]+\dots+a[i][1]+a[i][2]+\dots+a[i][j] s[i][j]=a[1][1]+a[1][2]++a[1][j]+a[2][1]+a[2][2]++a[2][j]++a[i][1]+a[i][2]++a[i][j]

差分

矩阵 a a a 的竖向差分矩阵 b b b 表示某个位置与其上方数之差。具体的,有 b [ i ] [ j ] = a [ i ] [ j ] − a [ i − 1 ] [ j ] b[i][j]=a[i][j]-a[i-1][j] b[i][j]=a[i][j]a[i1][j]。但这还没完。

我们再对 b b b 求出一个新的矩阵 c c c 表示某个位置与其左方数之差,也就是 c [ i ] [ j ] = b [ i ] [ j ] − b [ i ] [ j − 1 ] c[i][j]=b[i][j]-b[i][j-1] c[i][j]=b[i][j]b[i][j1]

这为什么正确?理解一下, b b b 表示的是 a a a 将每一列进行单独的差分,此时 a [ i ] [ j ] a[i][j] a[i][j] 就等于 b b b 中在其上面以及其本身数字的和,也就是 a [ i ] [ j ] = ∑ k = 1 i b [ k ] [ j ] a[i][j]=\sum_{k=1}^ib[k][j] a[i][j]=k=1ib[k][j]。此时,我们相当于在每一行构造出了一个序列,再对其求差分序列即可。(自己弄得也不是很清楚,感性理解一下就行

显然,矩阵和序列拥有同样的特性——一个矩阵是它的前缀矩阵的差分矩阵,也同时是它的差分矩阵的前缀矩阵。

前矩阵与差分矩阵的求法

差分矩阵的求法其实很好求,就按照上面的公式就行了。这里主要说一下前缀矩阵的求法。

我们按照以 i i i 为外循环从小到大, j j j 为内循环从小到大的顺序进行递推:

先说公式: s [ i ] [ j ] = s [ i − 1 ] [ j ] + s [ i ] [ j − 1 ] − s [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j] s[i][j]=s[i1][j]+s[i][j1]s[i1][j1]+a[i][j]。这其实画个图就能理解:(某个位置上的数字表示其被计算的次数)

1110 1100 1100 0000 2210 1100 0000 1110 0000 1110
0000+1100-0000+0010=1100-0000+0010=1100+0010=1110
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

矩阵前缀和与差分的作用

前缀和

考虑下面这个问题:

有一个 n × m n\times m n×m 的矩阵, q q q 次询问求其左上角坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角坐标为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 的子矩阵元素总和。

首先,处理出前缀矩阵。然后通过再画图的方式,就可以轻松得出公式。具体如下:

1110 1000 1110 1000 1110  1000 1110 1000  1110  2110 1000  1110 1110 0000
1110-1000-0000+0000=1110-(1000+0000-0000)=1110-(1000-0000)=1110-1000=0110
1110 1000 0000 0000 1110  1000 0000 0000  1110  1000 0000  1110 1000 0110

公式: a n s = s [ x 2 ] [ y 2 ] − s [ x 1 − 1 ] [ y 2 ] − s [ x 2 ] [ y 1 − 1 ] + s [ x 1 − 1 ] [ y 1 − 1 ] ans=s[x_2][y_2]-s[x_1-1][y_2]-s[x_2][y_1-1]+s[x_1-1][y_1-1] ans=s[x2][y2]s[x11][y2]s[x2][y11]+s[x11][y11]

差分

为方便,以下的差分矩阵均为 b [ i ] [ j ] = a [ i ] [ j ] − a [ i − 1 ] [ j ] b[i][j]=a[i][j]-a[i-1][j] b[i][j]=a[i][j]a[i1][j]

试求这个问题:

对于一个 n × m n\times m n×m 的矩阵 a a a q q q 次操作使左上角坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角坐标为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 的子矩阵元素集体增加 d d d。最后输出矩阵。

我们求出 a a a 的竖向差分矩阵 b b b 和差分矩阵 c c c。此时,我们将 b b b 的每一列视作一个差分序列。显然的,对于所有的 y 1 ≤ j ≤ y 2 y_1 \leq j \leq y_2 y1jy2 a a a 的第 j j j 列将对区间 [ x 1 , x 2 ] [x_1,x_2] [x1,x2] 增加 d d d,此时相当于 b [ x 1 ] [ j ] b[x_1][j] b[x1][j] d d d b [ x 2 + 1 ] [ j ] b[x_2+1][j] b[x2+1][j] d d d

然而,这样修改是不行的,因为它的总时间复杂度会到 Θ ( q m ) \Theta(qm) Θ(qm)。(不然要 c c c 干嘛

由于 c c c b b b 的横向差分矩阵,因此我们还可以将 b b b 的操作转化到 c c c 上。发现 b b b 的操作是将第 x 1 x_1 x1 行和第 x 2 + 1 x_2+1 x2+1 行的区间 [ y 1 , y 2 ] [y_1,y_2] [y1,y2] 同时增加 d d d。我们惊奇的发现,根据序列上的前缀和与差分特性,这相当于:

  • c [ x 1 ] [ y 1 ] c[x_1][y_1] c[x1][y1] c [ x 2 + 1 ] [ y 1 ] c[x_2+1][y_1] c[x2+1][y1] 同时加 d d d
  • c [ x 2 + 1 ] [ y 1 ] c[x_2+1][y_1] c[x2+1][y1] c [ x 2 + 1 ] [ y 2 + 1 ] c[x_2+1][y_2+1] c[x2+1][y2+1] 同时减 d d d

最终输出 c c c 的前缀矩阵。

至此,问题解决。

总结:矩阵的前缀和与差分其实相当于将矩阵拆成两个方向的多个前缀序列或差分序列,再以序列的方法进行求解。

  • 57
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值