EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces 代码推理及实战

EEGNet 代码推理及实战

EEGNet: A Compact Convolutional Neural Network
for EEG-based Brain-Computer Interfaces

主要是Conv、Pooling、BatchNorm、Activation(ELU、Linear)、Dense、Softmax模块的组合;

下面我们将分三个Block介绍以下网络结构

  • Conv2D
  • DepthwiseConv2D
  • SeparableConv2D

在这里插入图片描述

在这里插入图片描述

输入

输入EEGNet需要设置

  • 分类种类nb_classes
  • 通道数量Chans
  • 采样频率Samples
  • 卷积核长度kernLength
  • DepthwiseConv2D的filter个数F1
  • 每个输入通道可以扩展成多少个输出通道 D
  • SeparableConv2D的filter个数F2
  • 预定义的约束项norm_rate
  • dropoutRate 和 dropoutType(Dropout是随机将部分的元素置零,而SpatialDropout会随机将不部分区域置零,SpatialDropout操作需要制定置零的维度;YOLOV4中用到了DropBlock感觉有些类似;)

还有一些作者设置好的,不需要修改的内容:

  • depthwise_constraint限制卷积核的权重,避免过大的权重,这里是设置为max_norm(1.)
  • use_bias=False 不采用网络的偏置项,可以减少网络参数,起到正则化的作用
def EEGNet(nb_classes, Chans = 64, Samples 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SpaceSunflower

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值