PU帕德伯恩大学轴承数据集可视化

一、数据集介绍

PU轴承试验台由电机、测矩轴、滚动轴承试验模块、飞轮和负载电机组成。所有测试轴承型号均为6203型号滚动轴承。

帕德伯恩轴承数据集下载地址:

数据集和下载-设计和驱动技术(KAt)|帕德博恩大学 --- Data Sets and Download - Design and Drive Technology (KAt) | Paderborn University

  • 人工损伤轴承型号及其故障类型:

  •  加速寿命试验损伤的轴承型号及其故障类型:

  • 健康轴承型号:

  •  试验工况条件:

  • 损伤程度:

二、PU数据可视化

选择部分数据文件的前2048个数据点进行可视化 

import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd  # 用于读取CSV文件

# 文件名和列名
csv_file = 'N15_M07_F10_7C.csv'
columns_name = ['KA01', 'KA05', 'KA07', 'KI01', 'KI05', 'KI07']

# 采样率和数据长度
sampling_rate = 12000  # 采样率为12000Hz
num_samples = 4096  # 取前2048个数据点

# 创建文件夹,如果不存在
output_dir = 'PU信号示意图'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# 设置字体为 Times New Roman 并加粗
plt.rcParams['font.family'] = 'Times New Roman'  # 设置字体为 Times New Roman
plt.rcParams['font.weight'] = 'bold'  # 设置字体加粗
plt.rcParams['axes.unicode_minus'] = False  # 防止负号显示异常
plt.rcParams['axes.labelsize'] = 10  # 设置坐标轴标签的字体大小
plt.rcParams['axes.titlesize'] = 10  # 设置标题字体大小
plt.rcParams['axes.labelweight'] = 'bold'  # 设置坐标轴标签字体加粗
plt.rcParams['axes.titleweight'] = 'bold'  # 设置标题字体加粗

# 加载CSV文件
data = pd.read_csv(csv_file)

# 检查是否有足够的列数
if len(data.columns) < len(columns_name):
    raise ValueError(f"The CSV file should have at least {len(columns_name)} columns, but it has {len(data.columns)}.")

# 绘制信号时域图
plt.figure(figsize=(8, 6))  # 设置画布大小
for i, column_name in enumerate(columns_name):
    # 获取对应的信号数据
    signal_data = data.iloc[:num_samples, i].values  # 取每列的前2048个数据点

    # 创建时间轴
    time = np.arange(num_samples) / sampling_rate  # 时间轴以秒为单位

    # 绘制信号时域图
    plt.subplot(3, 2, i + 1)  # 将图表分成5行2列的网格,选择第i+1个位置
    plt.plot(time, signal_data, color='#2632cd')  # 设置信号的颜色为 #2632cd
    plt.title(columns_name[i], fontsize=10)  # 设置标题并加粗字体
    plt.xlabel('Time (s)', fontsize=10)  # 设置横坐标标签并加粗字体
    plt.ylabel('Amplitude', fontsize=10)  # 设置纵坐标标签并加粗字体

# 调整布局
plt.tight_layout()
plt.subplots_adjust(hspace=0.6)  # 设置子图间的垂直间距为0.9
# 保存为 .png 格式(DPI 为 600)
plt.savefig(os.path.join(output_dir, 'PU_Time_domain_signals.png'), dpi=600)

# 保存为 .tif 格式(DPI 为 300)
plt.savefig(os.path.join(output_dir, 'PU_Time_domain_signals.tif'), dpi=300)

# 保存为 .svg 格式
plt.savefig(os.path.join(output_dir, 'PU_Time_domain_signals.svg'))

# 保存为 .pdf 格式
plt.savefig(os.path.join(output_dir, 'PU_Time_domain_signals.pdf'))

# 显示图形(如果需要查看)
plt.show()  # 如果你希望查看图形,可以添加这个行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值