优惠券收集问题

题目:已知盒子中有数量众多的优惠券,一共N种,求

1.集齐N种优惠券,需要收集优惠券个数n的期望?

2.手里有n个优惠券的情况下,种类数的期望?

答案:注意区分是优惠券的种类数还是个数,不要看混了。

解题1:关键在于如何定义随机变量:我们设X_{i}表示在已有i-1种优惠券的情况下,再收集到下一种优惠券所需抽取的次数,i=1,2,...N。因此,集齐N种优惠券所需要的优惠券的总个数X=X_{1}+X_{2}+...+X_{N}=\sum_{i=1}^{N}X_{i},那么问题就变成了求E(X)的值。由于X_{i}互相独立,因此E(X)=E(X_{1}+X_{2}+...+X_{N})=\sum_{i=1}^{N}E(X_{i}),因此只要求出E(X_{i})即可。

另外,在收集到i-1种优惠券的时候,再收集第i种优惠券的概率P=1-\frac{i-1}{N}=\frac{N-i+1}{N},且随机变量X_{i}符合几何分布,因此其期望为概率的倒数:E(X_{i})=\frac{1}{P}=\frac{N}{N-i+1}

所以E(X)=\sum_{i=1}^{N}E(X_{i})=N(\frac{1}{N}+\frac{1}{N-1}+...+1)

解题2:使用指示变量(同高宇考研数学课上讲的伯努利计数变量)简化题目,设I_{i}=\left\{\begin{matrix}1\\0 \end{matrix}\right.,其中1表示第i种至少有一个,0表示第i种优惠券的个数=0。因此n个优惠券种类数Y=I_{1}+I_{2}+...+I_{N}=\sum ^{N}_{i=1}I_{i},问题就变成了求Y的期望E(Y),那求需要先求E(I_{i})。我们知道,对于每一张优惠券,其不为第i类的概率P=\frac{N-1}{N},n个优惠券中,第i种一个也没有的概率就是P(I_{i}=0)=(\frac{N-1}{N})^N,因此至少有一个的概率为P(I_{i}=1)=1-P(I_{i}=0)=1-(\frac{N-1}{N})^N

因为I_{i}服从0,1分布,所以期望=事件发生的概率:E(I_{i})=P(I_{i}=1),所以E(Y)=\sum _{i=1}^{N}E(I_{i})=N-N(\frac{N-1}{N})^n

与之相同的题目还有:有18个球,随机放入10个空盒子,求空盒子数量的期望

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值