题目:已知盒子中有数量众多的优惠券,一共N种,求
1.集齐N种优惠券,需要收集优惠券个数n的期望?
2.手里有n个优惠券的情况下,种类数的期望?
答案:注意区分是优惠券的种类数还是个数,不要看混了。
解题1:关键在于如何定义随机变量:我们设表示在已有i-1种优惠券的情况下,再收集到下一种优惠券所需抽取的次数,i=1,2,...N。因此,集齐N种优惠券所需要的优惠券的总个数
,那么问题就变成了求
的值。由于
互相独立,因此
,因此只要求出
即可。
另外,在收集到i-1种优惠券的时候,再收集第i种优惠券的概率,且随机变量
符合几何分布,因此其期望为概率的倒数:
。
所以。
解题2:使用指示变量(同高宇考研数学课上讲的伯努利计数变量)简化题目,设,其中1表示第i种至少有一个,0表示第i种优惠券的个数=0。因此n个优惠券种类数
,问题就变成了求Y的期望
,那求需要先求
。我们知道,对于每一张优惠券,其不为第i类的概率
,n个优惠券中,第i种一个也没有的概率就是
,因此至少有一个的概率为
因为服从0,1分布,所以期望=事件发生的概率:
,所以
与之相同的题目还有:有18个球,随机放入10个空盒子,求空盒子数量的期望。