证明能被11整除的数的特征

帮助到你了就点个赞吧!

Powered By Longer-站在巨人的肩膀上

来源:百度贴吧 大师:asdx3611

重新简化文字,公式通用化,优化排版。看不懂通用公式可以先看例子。


能被11整除的数有两个特征:

1. 奇数位的数字之和 减 偶数位的数字之和能被11整除。

2. 从右往左,每两个数分成一组,各组数之和能被11整除。

下面依次证明。


1. 求证:一个数如果能被11整除,具有如下特征,奇数位的数字之和与偶数位的数字之和的差能被11整除,则这个数能被11整除。

证明:

注意到下列事实:
一、99,9999,……,偶数位纯9数必能被11整除;
二、1001,100001,……,中间的0的个数为偶数的10……01必能被11整除。

例子(以五位数为例):
\begin{align*} s&=10000a+1000b+100c+10d+e\\ &=(9999a+a)+(1001b-b)+(99c+c)+(11d-d)+e\\ &=9999a+1001b+99c+11d\\&+[(a+c+e)-(b+d)]. \end{align*}
因为9999a+1001b+99c+11d能被11整除,所以,只要[(a+c+e)-(b+d)]能被11整除,原五位数就能被11整除,也就是:奇数位的数字之和与偶数位的数字之和的差能被11整除,则这个数能被11整除。

通用公式:

设n为偶数,则

\begin{align*} s&=10^na_{n}+10^{n-1}a_{n-1}+...+10a_{1}+a_{0}\\ &=(10^{n}-1)a_{n}+(10^{n-1}+1)a_{n-1}+...+(10+1)a_{1}\\ &+(a_{n}+a_{n-2}+...+a_{0})-(a_{n-1}+a_{n-3}+...+a_{1}) \end{align*}

其中(10^{n}-1)a_{n}+(10^{n-1}+1)a_{n-1}+...+(10+1)a_{1}每一项都能被11整除,因此,要s能被整除,需要(a_{n}+a_{n-2}+...+a_{0})-(a_{n-1}+a_{n-3}+...+a_{1})能被11整除,证毕。


2. 求证:一个多位数从右边开始,每两位为一组分成若干组。如果这些两位数(十位数字可以为0)的和能被11整除,那么原多位数能被11整除。

证明:

以七位数为例,将七位数从右边开始,每两位为一组,分成四组,也就是四个两位数串(即首位数字可以为0): a、b、c、d.
则原七位数可表示成:
\begin{align*} s&=1000000a+10000b+100c+d\\ &=(999999a+a)+(9999b+b)+(99c+c)+d\\ &=999999a+9999b+99c+(a+b+c+d) \end{align*}
因为999999a+9999b+99c能被11整除,所以,只要(a+b+c+d)能被11整除,原七位数就能被11整除。
也就是:如果这些两位数串(即首位数字可以为0)的和能被11整除,那么原多位数能被11整除。

例如:4055854,
因为04+05+58+54=121能被11整除,所以,4055854能被11整除。

通用公式:

a_{0}表示最后两位数,个位和十位,a_{2}表示千位和百位。

\begin{align*} s&=10^{2k}a_{2k}+10^{2k-2}a_{2k-2}+...+10^{2}a_{2}+a_{0}\\ &=(10^{2k}-1)a_{2k}+(10^{2k-2}-1)a_{2k-2}+...+(10^{2}-1)a_{2}\\ &+(a_{2k}+a_{2k-2}+...+a_{2}+a_{0}) \end{align*}

其中(10^{2k}-1)a_{2k}+(10^{2k-2}-1)a_{2k-2}+...+(10^{2}-1)a_{2}能被11整除,如果s能被11整除,则(a_{2k}+a_{2k-2}+...+a_{2}+a_{0})也要被11整除。


帮助到你了就点个赞吧!

Powered By Longer-站在巨人的肩膀上

来源:百度贴吧 大师:asdx3611

  • 13
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 证明: 设一个三位 $n$,其百位、十位、个位分别为 $a$、$b$、$c$,则 $n=100a+10b+c$。 对于 $n$ 能否被 $3$ 整除,有以下两种情况: 1. $n$ 能被 $3$ 整除。 则有 $n=3k$,其中 $k$ 是一个整。 将 $n$ 展开,得到 $100a+10b+c=3k$,也就是 $99a+9b+(a+b+c)=3k$。 因为 $99a+9b$ 能被 $3$ 整除,所以 $a+b+c$ 必须能被 $3$ 整除。 2. $n$ 不能被 $3$ 整除。 则有 $n=3k+1$ 或 $n=3k+2$,其中 $k$ 是一个整。 将 $n$ 展开,得到 $100a+10b+c=3k+1$ 或 $100a+10b+c=3k+2$。 对于第一种情况,$99a+9b+(a+b+c)+1=3k+1$,即 $99a+9b+(a+b+c)=3k$,$a+b+c$ 不能被 $3$ 整除。 对于第二种情况,$99a+9b+(a+b+c)+2=3k+2$,即 $99a+9b+(a+b+c)=3k$,$a+b+c$ 不能被 $3$ 整除。 综上所述,一个能被 $3$ 整除,当且仅当它的各位的和能被 $3$ 整除。 ### 回答2: 证明: 假设一个n能被3整除,即n=k*3,其中k为整。 将这个n表示为各位相加的形式,即n=a1*10^(n-1)+a2*10^(n-2)+...+an,其中a1,a2,...,an为各位上的字。 将n除以3得到的余为0,即n/3的余为0。 (a1*10^(n-1)+a2*10^(n-2)+...+an)/3的余为0。 将每一项除以3的余相加得到0。 对于每一项a1*10^(n-1)/3的余为0,因为10^(n-1)是10的倍,所以其整倍除以3的余都为0。 同理,对于每一项a2*10^(n-2)/3的余为0,以此类推,对于每一项an/3的余为0。 因此,一个n能被3整除,当且仅当它的各位的和能被3整除。 举例说明: 假设一个n=246,将它表示为各位相加的形式,即n=2*100+4*10+6。 因为2*100/3的余为0,4*10/3的余为0,6/3的余为0。 所以n=246/3的余为0,即n能被3整除。 另外,如果一个的各位的和能被3整除,且各位的和为s,即s/3的余为0,那么这个n=a1*10^(n-1)+a2*10^(n-2)+...+an也能整除3。 因为对于每一项ai*10^(n-i)/3的余为0,所以将每一项除以3的余相加得到的和一定为0,即n/3的余为0。 综上所述,一个能被3整除,当且仅当它的各位的和能被3整除。 ### 回答3: 证明:一个能被3整除,当且仅当它的各位的和能被3整除。 我们先证明充分性,即如果一个的各位的和能被3整除,那么这个也能被3整除。 假设这个是n,它的各位分别为a1, a2, ..., ak。那么n可以表示为: n = a1 * 10^(k-1) + a2 * 10^(k-2) + ... + ak * 10^0 我们知道10除以3余1,所以10^i除以3余1的。因此,n可以表示为: n = a1 * 1^(k-1) + a2 * 1^(k-2) + ... + ak * 1^0 (mod 3) 根据模运算的性质,1的任意次幂都等于1。因此,上式可以简化为: n = a1 + a2 + ... + ak (mod 3) 由于a1, a2, ..., ak都是各位,它们相加的和能被3整除。所以n能被3整除。 接下来我们证明必要性,即如果一个能被3整除,那么它的各位的和能被3整除。 假设这个是n,它可以表示为: n = a1 * 10^(k-1) + a2 * 10^(k-2) + ... + ak * 10^0 我们已经知道10除以3余1,所以10^i除以3余1。因此,n可以表示为: n = a1 * 1^(k-1) + a2 * 1^(k-2) + ... + ak * 1^0 (mod 3) 根据模运算的性质,1的任意次幂都等于1。因此,上式可以简化为: n = a1 + a2 + ... + ak (mod 3) 由于n能被3整除,所以n模3余0。根据模运算的性质,如果一个模3余0,那么它的各位的和也模3余0。 综上所述,一个能被3整除,当且仅当它的各位的和能被3整除
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值