题目
将一个 二叉搜索树 就地转化为一个 已排序的双向循环链表 。
对于双向循环列表,你可以将左右孩子指针作为双向循环链表的前驱和后继指针,第一个节点的前驱是最后一个节点,最后一个节点的后继是第一个节点。
特别地,我们希望可以就地完成转换操作。当转化完成以后,树中节点的左指针需要指向前驱,树中节点的右指针需要指向后继。还需要返回链表中最小元素的指针。
- 示例 1:
输入:root = [4,2,5,1,3]
输出:[1,2,3,4,5]
解释:下图显示了转化后的二叉搜索树,实线表示后继关系,虚线表示前驱关系。
- 示例 2:
输入:
root = [2,1,3]
输出:[1,2,3]
- 示例 3:
输入:
root = []
输出:[]
解释:输入是空树,所以输出也是空链表。
- 示例 4:
输入:
root = [1]
输出:[1]
提示:-1000 <= Node.val <= 1000 Node.left.val < Node.val < Node.right.val Node.val 的所有值都是独一无二的 0 <= Number of Nodes <= 2000
解法
解法来源:https://leetcode.cn/leetbook/read/illustration-of-algorithm/lxh893/
思考:
- 本题是二叉搜索树
- 对二叉搜索树,如果采用中序遍历,可得有序序列,因此考虑中序遍历
- 要形成双向链表,结合中序遍历为”左、根、右“的特点,设置 前驱节点pre 和 当前cur 指针会方便节点的指针修改,也就是 pre->right=cur、cur->left=pre
- 在遍历过程中,首先传入 cur->left,然后就对pre 和 cur的指向进行修改,修改完毕后更新pre,最后传入 cur->right
- 最终要形成循环链表,那么应该设置一个头节点head 指向第一个遍历到的节点(最小的节点);最后遍历到的节点就是最大的,也就是尾节点,更新完成后 pre 就是尾节点。此时更新头尾节点的指向使链表循环 head->left=pre pre->right=head
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node() {}
Node(int _val) {
val = _val;
left = NULL;
right = NULL;
}
Node(int _val, Node* _left, Node* _right) {
val = _val;
left = _left;
right = _right;
}
};
*/
class Solution {
public:
Node *pre, *head;
void dfs(Node* cur){
if(!cur) return;
dfs(cur->left);
if(!pre) head=cur;
else pre->right=cur;
cur->left=pre;
pre=cur;
dfs(cur->right);
}
Node* treeToDoublyList(Node* root) {
if(!root) return nullptr;
dfs(root);
head->left=pre;
pre->right=head;
return head;
}
};