[LeetCode][110]平衡二叉树

题目

110.平衡二叉树

给定一个二叉树,判断它是否是平衡二叉树。

  • 示例 1:
    在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:true

  • 示例 2:
    在这里插入图片描述

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

  • 示例 3:

输入:root = []
输出:true

  • 提示:
    树中的节点数在范围 [0, 5000] 内
    -104 <= Node.val <= 104

解法1:自顶向下由最大深度进行计算

  1. 平衡二叉树是指该树所有节点的左右子树的深度相差不超过 1
  2. 很容易联想到使用二叉树的最大深度计算方法,计算左右子树的深度差并判断,然后再计算子树的左右子树的深度差,再进行判断,不断递归

class Solution {
public:
    int maxDepth(TreeNode* root){
        if(!root) return 0;
        return max(maxDepth(root->left), maxDepth(root->right))+1;
    }
    bool isBalanced(TreeNode* root) {
        if(!root) return true;
        return isBalanced(root->left) && isBalanced(root->right) && abs(maxDepth(root->left)-maxDepth(root->right)) <= 1;
    }
};

解法2:剪枝——后序遍历

  1. 解法1 很容易想到,但是缺点是重复计算比较多,因为需要计算子树的高度差,子树的子树的高度差
  2. 如果从底至顶进行遍历,当发现左右子树高度差大于1 时,立刻返回,可减少不必要的重复操作
  3. 如果高度差符合要求,就返回当前的最大深度即可

class Solution {
public:
    int postOrder_maxDepth(TreeNode* root){//后序遍历最大深度
        if(!root) return 0;
        int leftDepth = postOrder_maxDepth(root->left);
        if(leftDepth == -1) return -1;
        int rightDepth = postOrder_maxDepth(root->right);
        if(rightDepth == -1) return -1;
        return abs(leftDepth-rightDepth)<=1 ? max(leftDepth, rightDepth)+1 : -1;
    }
    bool isBalanced(TreeNode* root) {
        return postOrder_maxDepth(root) != -1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Witheart__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值