【人工智能 学习总结】第七章 数据挖掘(2)

7.3聚类

7.3.1概念

聚类分析的核心是聚类,聚类是一种无监督学习,实现的是将整个数据集分成不同的“簇”,在相关的文献中,也将之称为“对象”或“数据点”

聚类要求簇与簇之间的区别尽可能大,而簇内数据的差异尽可能小。与分类不同,不需要先给出数据的类别属性

7.3.2聚类分析的基本方法

(1)划分聚类的方法

给定一个数据集,将构建数据集的有限个划分,每个划分都是一个簇,且每一个划分应当满足如下两个条件:

每个划分中至少包含一个样

每个样本只能属于一个簇

k-Meansk-Medoids就是典型的划分聚类算法

k-Means 算法是一种最常用的基于划分的聚类方法。其基本思想是:把数据集划分k 个簇,每个簇内部的样本非常相似,但不同簇之间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值