动态规划:子序列问题

最长上升子序列问题

  • 最长上升子序列问题(LIS问题),是指在一个给定长度为 N N N 的序列 A A A 中求出数值单调递增的子序列的长度最长为多少。

  • 状态表示与划分:用 F [ i ] F[i] F[i] 表示以 A [ i ] A[i] A[i] 为结尾的最长上升子序列的长度,从后往前枚举子序列的结尾的位置。

  • 边界: F [ 0 ] = 0 F[0] = 0 F[0]=0

  • 状态转移方程:
    F [ i ] = max ⁡ { F [ j ] + 1 }   ( j < i , A [ j ] < A [ i ] ) F[i] = \max\{F[j]+1\} \ (j<i,A[j]<A[i]) F[i]=max{F[j]+1} (j<i,A[j]<A[i])

  • 答案: max ⁡ { f [ i ] }   ( 1 ≤ i ≤ N ) \max\{f[i] \} \ (1 \le i \le N) max{f[i]} (1iN)

  • 代码

    #include <bits/stdc++.h>
    #define M 1005000
    using namespace std;
    
    int n, ans=0;
    int a[M], f[M];
    
    inline int read()
    {
        int re=0, f=1; char ch=getchar();
        while(ch<'0' || ch>'9') {if(ch=='-') f=-1; ch=getchar();}
        while(ch>='0' && ch<='9') {re=re*10+(ch-'0'); ch=getchar();}
        return re*f;
    }
    
    int main()
    {
        n=read();
        for(int i=1;i<=n;++i) a[i]=read();
        f[0]=0;
        for(int i=1;i<=n;++i)
        {
            for(int j=0;j<i;++j)
            {
                if(a[i]>a[j]) f[i]=max(f[i],f[j]+1);
            }
        }
        for(int i=0;i<=n;++i) ans=max(ans,f[i]);
        printf("%d\n",ans);
    }
    

最长公共子序列问题

  • 最长公共子序列问题(LCS),是指给定两个长度分别为 N N N M M M 的字符串 A A A B B B,求既是 A A A 的子序列又是 B B B 的子序列的串的长度最长为多少。

  • 状态表示与转移:用 F [ i ] [ j ] F[i][j] F[i][j] 表示前缀子串 A [ 1... i ] A[1 ... i] A[1...i] B [ 1... j ] B[1...j] B[1...j] 的LCS的长度。

  • 边界: F [ i ] [ 0 ] = F [ 0 ] [ j ] = 0 F[i][0] = F[0][j] = 0 F[i][0]=F[0][j]=0

  • 状态转移方程:
    F [ i ] [ j ] = max ⁡ { F [ i − 1 ] [ j ] F [ i ] [ j − 1 ] F [ i − 1 ] [ j − 1 ] + 1 ( A [ i ] = B [ j ] ) F[i][j] = \max \begin{cases} F[i-1][j] \\ F[i][j-1] \\ F[i-1][j-1]+1 (A[i]=B[j]) \\ \end{cases} F[i][j]=maxF[i1][j]F[i][j1]F[i1][j1]+1(A[i]=B[j])

  • 答案: F [ N ] [ M ] F[N][M] F[N][M]

  • 代码:

    #include <bits/stdc++.h>
    #define M 5000
    using namespace std;
    
    int n, m, ans=0;
    int f[M][M], a[M+10], b[M+10];
    
    inline int read()
    {
        int re=0, f=1; char ch=getchar();
        while(ch<'0' || ch>'9') {if(ch=='-') f=-1; ch=getchar();}
        while(ch>='0' && ch<='9') {re=re*10+(ch-'0'); ch=getchar();}
        return re*f;
    }
    
    int main()
    {
        n=read();
        for(int i=1;i<=n;++i) a[i]=read(), f[i][0]=0;
        for(int i=1;i<=n;++i) b[i]=read(), f[0][i]=0;
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
                f[i][j]=max(f[i][j],max(f[i-1][j],f[i][j-1]));
                if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            }
        }
        printf("%d\n",f[n][n]);
        return 0;
    }
    

最长公共上升子序列问题

  • 结合上面两个问题,很容易想到上面两个问题。这样我们想到了一个 n 3 n^3 n3 的算法。

    A [ i ] ≠ B [ j ] A[i] \ne B[j] A[i]=B[j] 时, F [ i ] [ j ] = F [ i − 1 ] [ j ] F[i][j]=F[i-1][j] F[i][j]=F[i1][j]

    A [ i ] = B [ j ] A[i] = B[j] A[i]=B[j] 时, F [ i ] [ j ] = max ⁡ { F [ i − 1 ] [ k ] + 1 } ( 0 ≤ k < j , B [ k ] < B [ j ] ) F[i][j] = \max\{F[i-1][k]+1 \}(0 \le k <j,B[k]<B[j]) F[i][j]=max{F[i1][k]+1}(0k<j,B[k]<B[j])

    ∴ \therefore A [ i ] = B [ j ] A[i]=B[j] A[i]=B[j] 时,   F [ i ] [ j ] = max ⁡ { F [ i − 1 ] [ k ] + 1 } ( 0 ≤ k < j , B [ k ] < A [ i ] ) \ F[i][j] = \max\{F[i-1][k]+1 \}(0 \le k < j,B[k]<A[i])  F[i][j]=max{F[i1][k]+1}(0k<j,B[k]<A[i])

  • 但是,这个算法最关键的是,如果按照一个合理的递推顺序, max ⁡ { F [ i − 1 ] [ k ] } \max\{F[i-1][k] \} max{F[i1][k]} 的值我们可以在之前访问 F [ i ] [ k ] F[i][k] F[i][k] 的时候通过维护更新一个 v a l val val 变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 F [ 1 ] [ l e n ( b ) ] F[1][len(b)] F[1][len(b)] 再去算 F [ 2 ] [ 1 ] F[2][1] F[2][1]

    如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个 v a l val val 变量为 0 0 0,然后开始内层循环。当 a [ i ] > b [ j ] a[i]>b[j] a[i]>b[j] 的时候令 v a l = F [ i − 1 ] [ j ] val=F[i-1][j] val=F[i1][j]。如果循环到了 a [ i ] = b [ j ] a[i]=b[j] a[i]=b[j] 的时候,则令 F [ i ] [ j ] = v a l + 1 F[i][j]=val+1 F[i][j]=val+1

    最后答案是 F [ l e n ( a ) ] [ 1 ] . . F [ l e n ( a ) ] [ l e n ( b ) ] F[len(a)][1]..F[len(a)][len(b)] F[len(a)][1]..F[len(a)][len(b)] 的最大值。

  • n 2 n^2 n2 代码

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 3005;
    int n;
    int main() {
      cin >> n;
      int dp[n + 1][n + 1], a[n + 1], b[n + 1];
      memset(dp, 0, sizeof(dp));
     
      for (int i = 1; i <= n; i++) cin >> a[i];
      for (int i = 1; i <= n; i++) cin >> b[i];
      for (int i = 1; i <= n; i++) {
        int v = 0;
        for (int j = 1; j <= n; j++) {
          if (dp[i - 1][j] > v && a[i] > b[j]) v = dp[i - 1][j];
          if (a[i] == b[j])
            dp[i][j] = v + 1;
          else {
            dp[i][j] = dp[i - 1][j];
          }
        }
      }
      int ans=0;
      for(int j=1;j<=n;j++)
      ans=max(dp[n][j],ans);
      cout << ans<< endl;
    }
    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值