单调栈学习笔记
单调栈,就是一个栈,使里面的元素单调递增或递减。还是从具体的例题中看一下单调栈的应用吧。
例1:Largest Rectangle in a Histogram
英文题面:Largest Rectangle in a Histogram
一句话题意:如下图所示,在一条水平线上有许多个宽一样的矩形,求包含于这些矩形内部最大的矩形的面积(就是下图中的阴影部分的面积)。矩形的个数 ≤ 1 0 5 \le 10^5 ≤105。
首先我们考虑一下,如果有
n
n
n 个矩形,如果矩形的高度为
h
i
h_i
hi,且都是单调递增的话,那么就以这个矩形的高度为最终的高度,答案显而易见就是:
max
{
h
i
×
(
n
−
i
+
1
)
}
(
i
∈
[
1
,
n
]
)
.
\max\{h_i \times (n-i+1) \} \ (i \in [1,n]).
max{hi×(n−i+1)} (i∈[1,n]).
但是这题中的矩形肯定不是单调递增的。但是如果按照上面的思想的话,想利用之前的矩形,以当前这个矩形的高度构成最终矩形的高度的话,那么之前所有比当前矩形高的矩形都没用了。(就是下图中红框框起来的部分)。
既然那一部分多余的都没有用处了,那我们就可以将这几个矩形用一个高为当前矩形的高,宽为几个矩形累加的新矩形来代替。那么不就和上面的简化版一样了吗?
具体来说,这题可以用单调栈来实现,时间复杂度为 O ( n ) O(n) O(n) 。我们建立一个栈,使栈中的矩形高度单调递增:
- 如果当前矩形高度大于栈顶矩形的高度,直接入栈。
- 如果当前的矩形高度小于等于栈顶矩形的高度,就不断弹出栈顶矩形,直至满足条件1,然后在栈顶放入一个宽度为弹出矩形累加的矩形。
- 当所有的矩形全部入栈完毕,一个一个弹出更新答案。为了方便,可以在所有矩形后加入一个高为 0 0 0 的矩形,即令 h [ n + 1 ] = 0 h[n+1] = 0 h[n+1]=0 。
核心代码如下
a[n+1]=top=0;
for(int i=1;i<=n+1;++i)
{
if(a[i]>s[top]) s[++top]=a[i], w[top]=1;
else
{
int width=0;
while(s[top]>a[i])
{
width+=w[top];
ans=max(ans,width*s[top]);
top--;
}
s[++top]=a[i], w[top]=width+1;
}
}
例2:City Game
查看题面:City Game
一句话题意:给出一个矩阵,求出这个矩阵中全以
F
构成的最大矩阵的面积。
如果只有一行的话,我们可以将 F
看成是高度为
1
1
1 的矩阵,将 R
看成是高度为
0
0
0 的矩阵。那么就和上面一道题一样了。
如果有两行的话,我们想一想,如果第一行为 F
,但是第二行为 R
,无法和第一行一起构成矩阵,那么这一列的高度也就清零了;但是如果第一行为 F
,第二行同样也为 F
的话,这一列的高度就加
1
1
1。
拓展到一个矩阵的话,就是下面这个表格的情况:
前一行 | 后一行 | 高度 |
---|---|---|
F | R | 0 0 0 |
F | F | h [ p r e ] + 1 h[pre]+1 h[pre]+1 |
那我们每一行都求一次单调栈,每一行都更新一次答案就可以了。代码如下
#include <bits/stdc++.h>
#define int long long
#define M 1010
using namespace std;
int n, m, ans=0;
int f[M][M], a[M], w[M], s[M], top=0;
inline int read()
{
int re=0, f=1; char ch=getchar();
while(ch<'0' || ch>'9') {if(ch=='-') f=-1; ch=getchar();}
while(ch>='0' && ch<='9') {re=re*10+(ch-'0'); ch=getchar();}
return re*f;
}
signed main()
{
n=read(), m=read();
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
char c;
cin>>c;
if(c=='F') f[i][j]=1;
}
}
ans=0;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
if(f[i][j]) a[j]=a[j]+1;
else a[j]=0;
}
a[m+1]=top=0;
for(int j=1;j<=m+1;++j)
{
if(a[j]>s[top]) s[++top]=a[j], w[top]=1;
else
{
int width=0;
while(s[top]>a[j])
{
width+=w[top];
ans=max(ans,width*s[top]);
top--;
}
s[++top]=a[j], w[top]=width+1;
}
}
}
printf("%lld\n",ans*3);
return 0;
}