单调栈的介绍以及一些基本性质

单调栈的定义:

单调栈就是栈内元素单调递增或者单调递减的栈,单调栈只能在栈顶操作。

为了更好的理解单调栈,则可将单调栈用生活情形模拟实现,例如:

我们借用拿号排队的场景来说明下。现在有很多人在排队买可乐,每个人手里都拿着号,越靠前的人手里的号越小,

但是号不一定是连续的。小明拿了号后并没有去排队,而是跑去约会了。等他回来后,发现队伍已经排得很长了,

他不能直接插入到队伍里,不然人家以为他是来插队的。小明只能跑到队伍最后,挨个询问排队人手里的号,

小明认为号比他大的人都是“插队”的,于是小明就会施魔法把这些人变消失,直到小明找到号比他小的为止。

在上面这个场景里,大家排的队伍就像是单调栈,因为大家手里拿的号是单调递增的。

而小明找自己位置的这个过程就是元素加入单调栈的过程。新加入的元素如果加到栈顶后,

如果栈里的元素不再是单调递增了,那么我们就删除加入前的栈顶元素,

就像小明施魔法把“插队”的人变消失一样。直到新元素加入后,栈依然是单调递增时,我们才把元素加进栈里。

(这样做的目的是“维护”单调栈,是单调栈保持原来的单调性不变)

从数组的角度阐述单调栈的性质:

给定一个包含若干个整数的数组,我们从第 1 个元素开始依次加入单调栈里,并且加入后更新单调栈。

那么单调栈有这样的性质:对于单调递增的栈,如果此时栈顶元素为 b,加入新元素 a 后进行更新时,

如果 a 大于 b,说明 a 在数组里不能再往左扩展了(由于单调栈的单调递增性质,b前面的元素均小于a),

也就是说,如果从 a 在数组中的位置开始往左边遍历,则 a 一定是第一个比 b 大的元素;

如果 a 小于 b,说明在数组里,a 前面至少有一个元素不能扩展到 a 的位置(至少有b元素,因为b的值要大于a,如果此时再加入新的

a,那么单调栈便不再单调,所以元素a此时不能压入栈顶,因为这并不是元素a"应该"在的位置,只有当元素a找到自己的位置时

元素a方能压入栈中,而这样做的前提是不改变单调栈的单调性),也就是对于这些元素来说,a 是其在数组右侧第一个比它小的元素。

单调栈的维护是 O(n) 级的时间复杂度,因为所有元素只会进入栈一次,并且出栈后再也不会进栈了。

单调栈的性质:

1.单调栈里的元素具有单调性

2.元素加入栈前,会在栈顶端把破坏栈单调性的元素都删除

3.使用单调栈可以找到元素向左遍历第一个比他小的元素,也可以找到元素向左遍历第一个比他大的元素。

对于第三条性质的解释(最常用的性质):

对于单调栈的第三条性质,你可能会产生疑问,为什么使用单调栈可以找到元素向左遍历第一个比他大的元素,

而不是最后一个比他大的元素呢?我们可以从单调栈中元素的单调性来解释这个问题,由于单调栈中的元素只能是单调递增或者是单调

递减的,所以我们可以分别讨论这两种情况(假设不存在两个相同的元素):

1.当单调栈中的元素是单调递增的时候,根据上面我们从数组的角度阐述单调栈的性质的叙述,可以得出:

(1).当a > b 时,则将元素a插入栈顶,新的栈顶则为a

(2).当a < b 时,则将从当前栈顶位置向前查找(边查找,栈顶元素边出栈),直到找到第一个比a小的数,停止查找,将元素a

插入栈顶(在当前找到的数之后,即此时元素a找到了自己的“位置”)

2.当单调栈中的元素是单调递减的时候,则有:

(1).当a < b 时,则将元素a插入栈顶,新的栈顶则为a

(2).当a > b 时,则将从当前栈顶位置向前查找(边查找,栈顶元素边出栈),直到找到第一个比a大的数,停止查找,将元素a

插入栈顶(在当前找到的数之后,即此时元素a找到了自己的“位置”)


如有错误,还请指正,O(∩_∩)O谢谢




单调栈和单调队列都是常用的数据结构,用于解决特定的问题。它们的特性可以用来估计时间复杂度。 **单调栈(Monotonic Stack)**:单调栈在处理一些需要按特定顺序访问元素的问题时非常有用。如果一个的元素值在遍历过程中保持单调递减或递增(即,对于中的每个元素,其后的元素都小于或大于它),那么这个就被称为单调栈单调栈的时间复杂度通常取决于问题的特性,但通常在最坏情况下是O(n),其中n是问题的规模。这是因为每次访问一个新的元素,都需要将其压入中,这需要O(1)时间,但压入元素后的所有后续操作(例如,弹出元素和查看顶元素)都需要遍历整个,这需要O(n)时间。 **单调队列(Monotonic Queue)**:单调队列通常用于解决需要维护一个单调序列的问题。如果一个队列的元素值在遍历过程中保持单调递增或递减(即,对于队列中的每个元素,它后面的所有元素都小于或大于它),那么这个队列就被称为单调队列。对于单调队列,如果我们遍历一次队列并将结果放入一个新的列表中,那么时间复杂度就是O(n)。这是因为我们需要遍历整个队列来获取结果,而这个过程需要O(n)时间。然而,如果我们使用一个单调栈来维护这个队列,那么时间复杂度就可以降低到O(n log k),其中k是队列中元素的数量。 以上是对这两种数据结构的时间复杂度的基本理解,但请注意,具体的时间复杂度可能会根据问题的具体情况和使用的算法有所不同。在处理实际问题时,最好能够理解问题本身的特点,选择最合适的数据结构和算法。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值