Spark学习——第二章:MapReduce-demo-代码分析

本文深入解析MapReduce编程技术在Hadoop和Spark中的应用。通过分析一个处理songplays.txt文件的示例,展示如何计算歌曲播放次数。使用mrjob库简化在Python中编写能在Hadoop上运行的代码,包括map、combiner和reduce阶段,最终统计每个歌曲标题的播放数量。
摘要由CSDN通过智能技术生成

Spark 学习第二章——MapReduce demo 代码分析

MapReduce

Mapreduce 编程技术用于分析集群中的海量数据集。 在下面的代码分析中,我们将一起了解 Hadoop MapReduce 是如何工作的;

Hadoop 和 Spark 之间最大的区别是,Spark 试图在内存中进行尽可能多的计算,从而避免在集群中来回移动数据。 Hadoop 将中间计算写到磁盘上,这可能会降低效率。 是一个比 Spark 更老的技术,也是大数据技术的基石之一。

1.1代码介绍

我们将处理一个“ songplays.txt”的文件。 这是一个文本文件,其中每一行代表一首在 Sparkify 应用程序中播放的歌曲。 Mapreduce 代码将计算每首歌曲被播放的次数。 换句话说,该代码计算歌曲标题在列表中出现的次数。

1.2代码实现

from mrjob.job import MRJob # import the mrjob library

class MRSongCount(MRJob):
    
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值