1、python的IDE(集成开发环境)
集成开发环境 (Integrated Development Environment,简称 IDE) 是一种用于软件开发的工具。它通常包括一个代码编辑器、一个调试器和一个构建工具,以及其他功能,例如自动补全、语法高亮、代码重构等。IDE 的目的是提供一个集成的工作环境,使开发人员能够更高效地编写、调试和测试代码。
一些常用的IDE如下:
2、anaconda的安装
2.1 下载
网址:Download Anaconda Distribution | Anaconda
点击右上角的free download进行免费下载
在这个位置输入自己的邮箱,点击submit
点击download进行下载
2.2 安装
1、打开下载好的安装程序,点击next进入下一步
2、阅读协议并同意i agree
3、安装类型:默认选择just me(一般都是自用),多用户客户端才选择all users
4、自定义安装路径(默认安装在c盘,个人推荐在其他盘新建文件夹,将文件安装在其他盘,c盘放满东西会影响电脑系统运行的流畅性)
5、配置环境变量
(第二行发红的是将anaconda添加到系统环境变量,这样就可以在命令行中使用anaconda的工具,建议全部勾选)
点击install进行安装(安装过程预计需要几分钟,清耐心等待)
6、等待安装完成
之后就一直点击next,最后点击finish即可(期间会跳出2个网页,大家不必理会)
(由于本人先前已经安装好了,所以这一步就没有放图片)
7、完成安装
安装完成后,可以在“开始菜单”中找到 Anaconda 的安装目录,并启动“Anaconda Navigator”来使用 Anaconda 的工具和功能。同时,也可以在命令行中使用 Anaconda 的工具和命令,例如使用“conda”命令来管理 Python 的虚拟环境和安装依赖包等。
3、使用anaconda
1、找到并打开 Anaconda Navigator (计算机慢的话,至少需要 1 分钟左右才能打开,稍安勿躁),打开jupyterlab或者jupyter notrbook(这是最常用的2个开发环境),本文以jupyterlab为例,点击launch进行运行。
2、进入 JupyterLab 界面,点击 Notebook (Python 3)
创建 Jupyter Notebook
在下面窗口中输入,1 + 2,然后点击“Ctrl + Enter”快捷键,运行并得到 3 这个结果。大家也可以尝试“Shift + Enter”快捷键,运行代码同时生成新区块。
4、查看安装python第三方库
4.1、方法一:在Anaconda Navigator界面直接操作
1、大家可以进入 Anaconda Navigator,点击 Environments,如果有不同环境的话,选择特定的环境,在右侧可以看到已经安装库的版本号。
(像这里,我自己已经安装了一个其他的环境叫做py_3_11_11,系统的默认环境是base,初学者直接在base上面操作即可)
2、检索相关库并进行安装
在右上角的方框搜索库名,即可直接搜索
需要注意的是,中间这个一列的选项,它代表搜索范围,installed表示搜索范围是本环境已经安装,uninstall搜索范围是本环境未安装,all表示全范围,大家在搜索的时候要注意这个选项,避免出现搜索不到库的情况(小白直接选all即可)
3、查看版本号
version这一列就是表示对应库的版本
4、创建新环境
create表示创建环境、import表示导入环境,remove表示删除环境
配置python版本号及环境名称
4.2 方法二:使用Anaconda Prompt命令行
1、打开Anaconda Prompt
以下2个选择哪个都可以
命令行前面的名称表示当前环境
2、一些命令行的介绍
查看conda版本:conda --version
查看conda的环境配置:conda config --show
查看有哪些虚拟环境:conda env list conda info -e conda info --envs
(显示虚拟环境及其安装位置)
查看当前虚拟环境安装了哪些包和库:conda list
(显示安装包和库及其对应的版本)
创建虚拟环境:conda create -n env_name python=3.8
(这表示创建python版本为3.8、名字为env_name的虚拟环境。创建后,env_name文件可以在Anaconda安装目录envs文件下找到。在不指定python版本时,自动创建基于最新python版本的虚拟环境. 。)
激活/切换虚拟环境:conda activate env_name
(表示由当前的环境切换到名为env_name的虚拟环境)
删除虚拟环境:conda remove --name env_name --all
(执行以下命令可以将该指定虚拟环境及其中所安装的包都删除。)
检索指定包的安装情况:conda search package_name
(package_name为指定包的名称)
安装包:conda install package_name=x.x.x
(package_name为指定包的名称,“=x.x.x”表示指定版本,不添加默认安装最新版本)
更新包的版本到最新:conda update package_name
(package_name为指定包的名称)
卸载包:conda uninstall package_name
(package_name为指定包的名称, 这样会将依赖于这个包的所有其它包也同时卸载。)
4.3 第三方库的健康情况
最简单的办法就是通过 Synk Advisor 打分来评估 Python 库的健康情况:
pandas - Python Package Health Analysis | Snyk
如图所示为 pandas库目前的的评分情况。一般来说,评分在 85 分左右的 Python库可以一试。评分如果在 95 分上下,说明 Python 库的健康程度很好。