yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)

本文详细介绍了如何部署和训练YOLOv8模型,包括显卡驱动检查、代码下载、CUDA和cudnn安装、Anaconda环境配置、PyTorch安装、库的安装、推理检测以及数据集的准备、训练和测试。YOLOv8在精度、速度和任务支持上都有所提升,并且易于训练和部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​​​​​​yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客

YOLOv8是一种基于深度神经网络的目标检测算法,它是YOLO(You Only Look Once)系列目标检测算法的最新版本。YOLOv8的主要改进包括:

  1. 更高的检测精度:通过引入更深的卷积神经网络和更多的特征层,YOLOv8可以在保持实时性的同时提高检测精度。

  2. 更快的检测速度:通过对模型进行优化,YOLOv8可以在不降低检测精度的情况下提高检测速度。

  3. 支持更多的检测任务:除了传统的物体检测任务之外,YOLOv8还支持人脸检测、车辆检测等更多的检测任务。

  4. 更易于训练和部署:YOLOv8采用了更加简单的网络结构和训练策略,使得它更易于训练和部署。

YOLOv8是一个非常强大的目标检测算法,它在准确性、速度和易用性方面都具有很大的优势,因此在工业界和学术界都受到了广泛的关注和应用。

一、yolov8部署

说明:请严格安装部署步骤。

第一步、显卡驱动查看 nvidia-smi 


第二步、yolo8代码下载

https://github.com/ultralytics/ultralytics 


第三步、cuda及cudnn安装

https://developer.nvidia.com/cuda-toolkit-archive 

https://developer.nvidia.com/rdp/cudnn-archive 


第四步、安装anaconda

https://www.anaconda.com/download

环境变量设置(安装在哪里就找那个路径):


第五步、创建python环境

conda create -n yolo python==3.11 

conda环境操作指南:

查看现有环境 conda env list  

激活失败 conda init cmd.exe

删除环境 conda env remove -n yolo 


第六步、激活环境

一定要选择命令提示符。

activate yolo

以后每次使用都要激活该环境。


第七步、安装pytorch

https://pytorch.org/

我是cuda12.0,所以安装cuda11.8版本。 

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
或:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 


第八步、安装库

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple


第九步、推理检测

yolo predict model=yolov8n.pt source=bus.jpg

图片名自己设置,自动下载模型yolov8n.pt,结果在runs文件夹中。

第十步、训练

yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

自动训练下载数据集datasets,报错:

OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading "E:\Anaconda3\envs\yolov8\lib\site-packages\torch\lib\nvfuser_codegen.dll" or one of its dependencies.
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "E:\Anaconda3\envs\yolov8\lib\multiprocessing\spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "E:\Anaconda3\envs\yolov8\lib\multiprocessing\spawn.py", line 126, in _main
    self = reduction.pickle.load(from_parent)
  File "E:\Anaconda3\envs\yolov8\lib\site-packages\torch\__init__.py", line 128, in <module>
    raise err
OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading "E:\Anaconda3\envs\yolov8\lib\site-packages\torch\lib\nvfuser_codegen.dll" or one of its dependencies.

设置安装anaconda所在盘的虚拟内存。

二、yolov8训练自己的数据集

第一步、数据准备

在yolov8中建立datasets文件夹,然后建立数据集文件夹mydata。

mydata中是imges图片文件和label标注后的Annotations xml文件夹和imageSets。 

其中使用makeTxt.py,给数据分类trian val test。

import os
import random
 
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = './Annotations'
txtsavepath = './ImageSets'
total_xml = os.listdir(xmlfilepath)
 
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
 
ftrainval = open('./ImageSets/trainval.txt', 'w')
ftest = open('./ImageSets/test.txt', 'w')
ftrain = open('./ImageSets/train.txt', 'w')
fval = open('./ImageSets/val.txt', 'w')
 
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行后ImageSets文件夹生成四个txt。 

再使用voc_label.py,将数据转换成label格式。修改自己的类,逗号隔开,我训练的就一个“老鼠”类。

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets=[('train'), ('test'),('val')]

classes = ["mouse"]


def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml'%(image_id))
    out_file = open('labels/%s.txt'%( image_id), 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        # difficult = obj.find('difficult').text
        cls = obj.find('name').text
        # if cls not in classes or int(difficult)==1:

        if cls not in classes:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/%s.txt'%(image_set)).read().strip().split()
    list_file = open('%s.txt'%(image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/images/%s.jpg\n'%(wd,image_id))
        convert_annotation(image_id)
    list_file.close()

#os.system("cat 2008_train.txt > train.txt")
#os.system("cat 2008_train.txt 2008_val.txt > train.txt")
#os.system("cat 2008_train.txt 2008_val.txt 2008_test.txt> train.txt")

#os.system("cat 2014_train.txt 2014_val.txt 2012_train.txt 2012_val.txt > train.txt")
#os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

运行后生成labels文件夹和三个txt。

至此数据准备工作完成,开始训练。 

第二步、训练

建立一个yaml文件

shu.yaml

train: E:/ultralytics-main/datasets/mydata/train.txt
val: E:/ultralytics-main/datasets/mydata/val.txt


# Classes
names:
  0: mouse

训练指令:

yolo train data=shu.yaml model=yolov8n.pt epochs=100 lr0=0.01 

至此训练完成。 在runs中生成训练结果和训练模型。

训练结果分析:yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客

第三步、测试 

使用训练后的模型进行测试。

测试指令:

yolo predict model=runs/detect/train12/weights/best.pt source=datasets/mydata/images/mouse-4-6-0004.jpg

### 关于YOLOv8实际应用教程 尽管当前提供的参考资料未直接提及YOLOv8的具体内容,但从其他版本YOLO系列的学习资料中可以推测出一套适用于YOLOv8的通用实践方法[^1]。 #### 创建YOLOv8开发环境 为了确保能够顺利运行YOLOv8的相关功能,在开始之前需先搭建好合适的开发平台。这通常涉及安装必要的依赖库和框架组件,比如Python解释器、PyTorch等机器学习库以及其他辅助工具包。对于特定的操作系统,可能还需要额外配置CUDA驱动程序以加速GPU上的计算任务。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 准备数据集定义配置文件 在准备自定义的数据集时,应当遵循标准的对象检测格式,如COCO或VOC。之后创建相应的`.yaml`配置文件来描述数据集的信息,包括类别名称、图像路径和其他参数设置。这些设定会直接影响到后续训练过程中网络的行为模式。 ```yaml train: ./data/train/images/ val: ./data/validation/images/ nc: 80 names: ['person', 'bicycle', ... ] ``` #### 训练与优化模型性能 启动训练流程前要仔细调整超参选项,例如批次大小(batch size)、初始学习率(learning rate)等关键因素都会显著影响最终的结果质量。通过不断迭代测试不同的组合方案寻找最优解,定期保存中间状态以便回溯分析进展状况。 ```python from yolov8 import train if __name__ == '__main__': opt = { "batch_size": 16, "epochs": 50, "imgsz": 640, # 图像尺寸 "device": "cuda", # 使用设备(cpu 或 cuda) "project": "./runs/exp", "exist_ok": False, "weights": None # 权重初始化方式(pretrained or scratch) } train.run(**opt) ``` #### 测试评估及部署发布 完成一轮或多轮次的有效训练后,下一步就是利用验证集来进行全面评测,统计各项指标得分情况从而判断模型是否达到了预期目标。如果一切正常,则可考虑将其转换成适合生产环境中使用的轻量化版本,进而集成至各类应用场景当中去执行实时推理操作。 ```python import cv2 from yolov8.utils.general import non_max_suppression from yolov8.models.experimental import attempt_load model = attempt_load('best.pt') # 加载最佳权重文件 image = cv2.imread('test.jpg') results = model(image) for *xyxy, conf, cls in reversed(non_max_suppression(results)): label = f'{classes[int(cls)]} {conf:.2f}' plot_one_box(xyxy, image, label=label, color=colors(c), line_thickness=3) cv2.imshow('Detection Result', image) cv2.waitKey() ```
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值