BZOJ 3566 浅谈树形期望静态逆序双向递推

34 篇文章 0 订阅
9 篇文章 0 订阅

这里写图片描述
世界真的很大
这题想了很久。。看了大佬的题解突然豁然开朗:点这里
对于最末状态是01型的且单点权值为1的期望,可以像这样转化思路
因为在这种情况下,期望就等价于概率和
这道题也是如此:点这里

看题先:

description:

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

答案要求的是,期望有多少充电元件处于通电状态
就是每个元件的通电概率 * 权值 ,权值为1,就相当于每个元件最后通电的概率和

这道题的电源不仅只插在一个充电元件上,所有有可能导电的充电元件都会被插上电源

每个元件的充电概率有两个,要么是他自己直接被冲上电,要么是从其他与其相连的元件转移过来的
自己直接充上电的概率题目已经给出,考虑怎么由其他的状态转移过来。就是与其相连的电器元件的通电概率 * 这条导线的通电概率加起来
乍一看好像很简单,其实却并非如此。
比如你要求这个电器元件的通电概率,就要知道与其相连的所有电器元件的通电概率。而要知道其他元件的通电概率,这个电器元件的通电概率就是不可或缺的
这就是一个死循环了,我们没法给出一个更新状态的顺序来进行递推

此时必须在仔细阅读题目了题目中说的是由 n-1 条导线连接 n 个电器元件,这是什么?这是树啊
就是说电器元件组成的图构成了一棵树的样子
而对于树上的一个点,与其相连的点就会被分成儿子与父亲两类
我们就考虑能否按照树的顺序来转移状态。
首先只考虑父亲到儿子的充电概率,儿子的概率就等于父亲的概率 * 这条导线的通电概率。但是父亲的通电概率里面并不包括儿子的通电转移上去的情况,那么即是说状态必须分开来设计
看着头都大,我就被卷入了这个怪圈
但应该是有解决方法的

考虑答案究竟是要求什么
我们想知道的是每个电器元件最后的通电概率。
我们不关心这个元件是怎么通的电,不管是从父亲也好,儿子也好,还是自己直接通电也好。我们之前的思路就是一直在讨论每个电器元件的通电方式之间的概率影响。
由于这种关系互相干涉,比如儿子的通电概率对父亲有影响,父亲反过来对儿子也有影响,造成了状态转移十分复杂
也就是说,我们只关心每个电器元件“有没有”通电的概率,不关心每个电器元件“怎么”通的电,而后者却是我们花大量时间讨论的

引入一个例子:

有十张牌,编号1到10,连续模十次,每次摸完放回去,问摸到1的概率是多少

不管摸到1次1,2次1,3次或是N次,都算是摸到了
当然可以去枚举模几次,模哪几张,这是肯定没问题的
但是在我们根本不关心究竟是哪几张,究竟摸了几次的情况下,究竟还需要怎么麻烦吗?

这道题也就是如此,我们只关心究竟摸到了没有的概率,不关心之间过程,我们就反其道而行之,去找其反面

模10次模到1的反面,即是摸10次“都没”摸到1
一次没有摸到一的概率是9/10 ,连续十次没有摸到1的概率自然是(9/10) ^ 10
1-(9/10)^10,即是反面的反面,这便可瞬间“颠倒正反”
【Re : CREATORS】

而考虑这道题,我们就有了新的思路。
去找每一个点,“不被通电”的概率,1减去即是答案
不被通电就只有一种情况,自己不被直接充电,且没有电转移过来

由于还是要考虑到转移和树形结构,我们还是需要考虑从子树部分没有电的概率表示为f,和从父亲那里没有电表示为g,分开来考虑。

子树没有电转移过来无非就是1.子树自己没有电,2.子树本身有电但是电线坏了,这个概率和我们用h来表示

f数组很明显就是 这个点本身不被充电的概率 * 他所有的儿子的 h 值

g 数组 就是其父亲没电的概率,即其父亲的g值乘以其没有从其他儿子那里得到电的概率,就是父亲的f值除以这个点的h值
特判h值为0的情况
加上其有电但是电线坏了的概率

这样每个点最后没电的概率就是f * g
有电的概率就是1-f * g,多简单

完整代码:

#include<stdio.h>

const double eps=1e-8;

struct edge
{
    int v,last;
    double w;
}ed[1000010];

int n,num=0;
int head[500010];
double f[500010],g[500010],a[500010],h[500010],ans=0;

void add(int u,int v,double w)
{
    num++;
    ed[num].v=v;
    ed[num].w=w;
    ed[num].last=head[u];
    head[u]=num;
}

void dfs1(int u,int fa)
{
    f[u]=1-a[u];
    for(int i=head[u];i;i=ed[i].last)
    {
        int v=ed[i].v;
        if(v==fa) continue ;
        dfs1(v,u);
        h[v]=f[v]+(1-f[v])*(1-ed[i].w);
        f[u]*=h[v];
    }
}

void dfs2(int u,int fa)
{
    for(int i=head[u];i;i=ed[i].last)
    {
        int v=ed[i].v;
        if(v==fa) continue;
        double t= h[v] < eps ? 0 : f[u]/h[v]*g[u];
        g[v]+=t+(1-t)*(1-ed[i].w);
        dfs2(v,u);  
    }
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,(double) w/100);
        add(v,u,(double) w/100);
    }
    for(int i=1;i<=n;i++)
        scanf("%lf",&a[i]),a[i]/=100;
    dfs1(1,1);
    g[1]=1.0;
    dfs2(1,1);
    for(int i=1;i<=n;i++)
        ans+=1-f[i]*g[i];
    printf("%0.6lf\n",ans);
    return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/

嗯,就是这样

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值