【SHOI2012】BZOJ2830随机树题解(概率期望+DP)

题目:BZOJ2830.
题目大意:一棵有 n n n个叶子的二叉树可以通过 n − 1 n-1 n1次等概率随机往一个叶节点上加两个儿子生成.现在给定 q , n q,n q,n,当 q = 1 q=1 q=1时输出 n n n个叶子的二叉树叶子深度平均值的期望, q = 2 q=2 q=2输出树高的期望,注意根节点深度为 0 0 0.
1 ≤ q ≤ 2 , 1 ≤ n ≤ 100 1\leq q\leq 2,1\leq n\leq100 1q2,1n100.

考虑 q = 1 q=1 q=1,很容易想到设 f [ i ] f[i] f[i]表示 i i i个叶子的答案,方程:
f [ i ] = f [ i − 1 ] ∗ ( i − 1 ) + f [ i − 1 ] + 2 i = f [ i − 1 ] + i 2 f[i]=\frac{f[i-1]*(i-1)+f[i-1]+2}{i}=f[i-1]+\frac{i}{2} f[i]=if[i1](i1)+f[i1]+2=f[i1]+2i

考虑 q = 2 q=2 q=2,发现只设一维状态不行了,考虑加一维状态,设 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i个叶子深度为 j j j的概率.通过枚举左子树的叶子数,我们可以列出如下方程:
f [ i ] [ j ] = ∑ k = 1 i − 1 p [ i ] [ j ] ( f [ k ] [ j − 1 ] ∑ t = 0 j f [ i − k ] [ t − 1 ] + f [ i − k ] [ j − 1 ] ∑ t = 0 j f [ k ] [ t ] − f [ k ] [ t ] ∗ f [ i − k ] [ t ] ) f[i][j]=\sum_{k=1}^{i-1}p[i][j](f[k][j-1]\sum_{t=0}^{j}f[i-k][t-1]+f[i-k][j-1]\sum_{t=0}^{j}f[k][t]-f[k][t]*f[i-k][t]) f[i][j]=k=1i1p[i][j](f[k][j1]t=0jf[ik][t1]+f[ik][j1]t=0jf[k][t]f[k][t]f[ik][t])

其中 p [ i ] [ j ] p[i][j] p[i][j]表示 i i i个叶子的树 j j j个在左子树的概率.

我们发现只要能够预处理出 p [ i ] [ j ] p[i][j] p[i][j]就可以 O ( n 4 ) O(n^4) O(n4)解决这个问题了,可是这个不够快.

考虑这两个式子中都有一个和的形式,可以考虑前缀和,但是由于计算答案的式子:
E ( X ) = ∑ i = 1 n f [ n ] [ i ] ∗ i E(X)=\sum_{i=1}^{n}f[n][i]*i E(X)=i=1nf[n][i]i

用前缀和来处理这个式子有些麻烦,所以考虑变成后缀和,即 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i个叶子深度至少为 j j j的概率,那么:
E ( X ) = ∑ i = 1 n f [ n ] [ i ] f [ i ] [ j ] = ∑ k = 1 i − 1 p [ i ] [ j ] ( f [ k ] [ j − 1 ] + f [ i − k ] [ j − 1 ] − f [ k ] [ j − 1 ] ∗ f [ i − k ] [ j − 1 ] ) E(X)=\sum_{i=1}^{n}f[n][i]\\ f[i][j]=\sum_{k=1}^{i-1}p[i][j](f[k][j-1]+f[i-k][j-1]-f[k][j-1]*f[i-k][j-1]) E(X)=i=1nf[n][i]f[i][j]=k=1i1p[i][j](f[k][j1]+f[ik][j1]f[k][j1]f[ik][j1])

这个时候计算的复杂度就变成 O ( n 3 ) O(n^3) O(n3)的了,但是我们还不知道 p [ i ] [ j ] p[i][j] p[i][j]呢.

其实 p [ i ] [ j ] = 1 i − 1 p[i][j]=\frac{1}{i-1} p[i][j]=i11,这个东西用数学归纳法证明:
p [ i ] [ j ] = p [ i − 1 ] [ j − 1 ] ∗ j − 1 i − 1 + p [ i − 1 ] [ j ] ∗ i − 1 − j i − 1 p[i][j]=p[i-1][j-1]*\frac{j-1}{i-1}+p[i-1][j]*\frac{i-1-j}{i-1} p[i][j]=p[i1][j1]i1j1+p[i1][j]i1i1j

p [ i − 1 ] [ j ] = 1 i − 2 p[i-1][j]=\frac{1}{i-2} p[i1][j]=i21,那么:
p [ i ] [ j ] = 1 i − 2 ( j − 1 i − 1 + i − 1 − j i − 1 ) = 1 i − 1 p[i][j]=\frac{1}{i-2}(\frac{j-1}{i-1}+\frac{i-1-j}{i-1})=\frac{1}{i-1} p[i][j]=i21(i1j1+i1i1j)=i11

那么代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=100;

int n,q;
double f1[N+9],f2[N+9][N+9],ans;

Abigail into(){
  scanf("%d%d",&q,&n);
}

Abigail work1(){
  f1[1]=0;
  for (int i=2;i<=n;++i)
    f1[i]=f1[i-1]+2.0/i;
  ans=f1[n];
}

Abigail work2(){
  for (int i=1;i<=n;++i) f2[i][0]=1;
  for (int i=2;i<=n;++i)
    for (int j=1;j<i;++j){
      for (int k=1;k<i;++k)
        f2[i][j]+=f2[k][j-1]+f2[i-k][j-1]-f2[k][j-1]*f2[i-k][j-1];
      f2[i][j]/=i-1;
	}
  for (int i=1;i<n;++i)
    ans+=f2[n][i];
}

Abigail outo(){
  printf("%.6lf\n",ans);
}

int main(){
  into();
  q==1?work1():work2();
  outo();
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值