HiHoCoder 1181 浅谈fleury算法求解无向图欧拉路径

这里写图片描述
世界真的很大
欧拉路是一个老大难的问题,尽管性质什么的还是比较熟悉,但忽然想起来好像连求欧拉路的算法都不会哎。。。
然后通过某大佬的blog知道了这道题,算是裸题了吧
题面就非常有意思

description:

在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌。
这里写图片描述

主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过。

小Hi注意到在桥头有一张小纸片,于是控制主角捡起了这张纸片,只见上面写着:

将M块骨牌首尾相连放置于石桥的凹糟中,即可关闭火焰墙。切记骨牌需要数字相同才能连接。
——By 无名的冒险者
小Hi和小Ho打开了主角的道具栏,发现主角恰好拥有M快骨牌。

小Ho:也就是说要把所有骨牌都放在凹槽中才能关闭火焰墙,数字相同是什么意思?

小Hi:你看,每一块骨牌两端各有一个数字,大概是只有当数字相同时才可以相连放置,比如:
这里写图片描述

小Ho:原来如此,那么我们先看看能不能把所有的骨牌连接起来吧

input:

第1行:2个正整数,N,M。分别表示骨牌上出现的最大数字和骨牌数量。1≤N≤1,000,1≤M≤5,000

第2..M+1行:每行2个整数,u,v。第i+1行表示第i块骨牌两端的数字(u,v),1≤u,v≤N

output:

第1行:m+1个数字,表示骨牌首尾相连后的数字

比如骨牌连接的状态为(1,5)(5,3)(3,2)(2,4)(4,3),则输出”1 5 3 2 4 3”

你可以输出任意一组合法的解。

好久没见过怎么良心的题了,还是让当事人自己来谈一下题解吧:

提示:Fleury算法求欧拉路径

小Ho:这种简单的谜题就交给我吧!

小Hi:真的没问题么?

<10分钟过去>

小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了。

小Hi:哎,我就知道你会遇到问题。

小Ho:小Hi快来帮帮我!

小Hi:好了,好了。让我们一起来解决这个问题。

<小Hi思考了一下>

小Hi:原来是这样。。。小Ho你仔细观察这个例子:
这里写图片描述

因为相连的两个数字总是相同的,不妨我们只写一次,那么这个例子可以写成:3-2-4-3-5-1。6个数字刚好有5个间隙,每个间隙两边的数字由恰好对应了一块骨牌。

如果我们将每一个数字看作一个点,每一块骨牌看作一条边。你觉得是怎么样的呢?

小Ho:以这个例子来说的话,就是:
这里写图片描述

要把所有的骨牌连起来,也就是把所有的边都走一次。咦,这不是欧拉路问题么!

小Hi:没错,这问题其实就是一个欧拉路的问题,不过和上一次不一样的在于,这一次我们要找出一条欧拉路径。

小Ho:那我们应该如何来找一条路径呢?

小Hi:我们还是借用一下上次的例子吧
这里写图片描述

使用我们上一次证明欧拉路判定的方法,我们在这个例子中找到了2条路径:

L1: 4-5-2-3-6-5
L2: 2-4-1-2
假设我们栈S,记录我们每一次查找路径时的结点顺序。当我们找到L1时,栈S内的情况为:

S: 4 5 2 3 6 5 [Top]
此时我们一步一步出栈并将这些边删除。当我们到节点2时,我们发现节点2刚好是L1与L2的公共节点。并且L2满足走过其他边之后回到了节点2。如果我们在这个地方将L2先走一遍,再继续走L1不就刚好走过了所有边么。

而且在上一次的证明中我们知道,除了L1之外,其他的路径L2、L3…一定都满足起点与终点为同一个点。所以从任意一个公共节点出发一定有一条路径回到这个节点。

由此我们得到了一个算法:

在原图中找一个L1路径

从L1的终点往回回溯,依次将每个点出栈。并检查当前点是否还有其他没有经过的边。若存在则以当前点为起点,查找L2,并对L2的节点同样用栈记录重复该算法。

当L1中的点全部出栈后,算法结束。

在这里我们再来一个有3层的例子:
这里写图片描述

在这个例子中:

L1: 1-2-6-5-1
L2: 2-3-7-2
L3: 3-4-8-3
第一步时我们将L1压入栈S,同时我们用一个数组Path来记录我们出栈的顺序:

S: [1 2 6 5 1]
Path:
然后出栈到节点2时我们发现了2有其他路径,于是我们把2的另一条路径加入:

S: 1 [2 3 7 2]
Path: 1 5 6
此时L2已经走完,然后再开始弹出元素,直到我们发现3有其他路径,同样压入栈:

S: 1 2 [3 4 8 3]
Path: 1 5 6 2 7
之后依次弹出剩下的元素:

S:
Path: 1 5 6 2 7 3 8 4 3 2 1
此时的Path就正好是我们需要的欧拉路径。

小Ho:原来这样就能求出欧拉路,真是挺巧妙的。

小Hi:而且这个算法在实现时也有很巧妙的方法。因为DFS本身就是一个入栈出栈的过程,所以我们直接利用DFS的性质来实现栈,其伪代码如下:

DFS(u):
While (u存在未被删除的边e(u,v))
删除边e(u,v)
DFS(v)
End
PathSize ← PathSize + 1
Path[ PathSize ] ← u
小Ho:这代码好简单,我觉得我可以实现它!

小Hi:那么实现就交给你了

小Ho:没问题!交给我吧

所以说这道题非常有意思
总结一下
由于欧拉路径问题中,可以吧路径拆成一条首位不同的路径加上很多个在这个路径上的环组成
所以我们可以直接DFS来记录顺序,有环直接加就行了
但是有可能第一遍走的时候直接走到了那条路径而无法回头
所以我们采用倒着压栈的方法,可以吧途中遇见的所有点按逆序压入栈中,这样就可以实现“插入路径”的目的

完整代码:

#include<stdio.h>
#include<stack>
using namespace std;

struct edge
{
    int v,last,mrk;
}ed[2000010];

stack <int> stk;

int n,m,num=1,flag=1;
int head[100010],du[100010];

void add(int u,int v)
{
    num++;
    ed[num].v=v;
    ed[num].mrk=0;
    ed[num].last=head[u];
    head[u]=num;
}

void dfs(int u)
{
    for(int i=head[u];i;i=ed[i].last)
    {
        int v=ed[i].v;
        if(ed[i].mrk) continue ;
        ed[i].mrk=ed[i^1].mrk=1;
        dfs(v);
    }
    stk.push(u);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        add(u,v),add(v,u);
        du[u]++,du[v]++;
    }
    for(int i=1;i<=n;i++)
        if(flag && du[i]) dfs(i),flag=0;
    while(!stk.empty())
    {
        printf("%d ",stk.top());
        stk.pop();
    }
    return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/

嗯,就是这样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值