欧拉图,欧拉通路,欧拉回路,Hierholzer算法详解


零、哥尼斯堡七桥问题

这是个脍炙人口的问题。

莱昂哈德·欧拉在1735年提出:河中心有两个小岛。小岛与河的两岸有七条桥连接。在所有桥都只能走一遍的前提下,如何才能把这个地方所有的桥都走遍?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

事实上,上图是不存在这样的方案的。

欧拉把问题的实质归于一笔画问题,即判断一个图是否能够遍历完所有的边而没有重复,而柯尼斯堡七桥问题则是一笔画问题的一个具体情境。

随着图论的发展,我们将上述问题归结为 欧拉路径 问题。

一、欧拉图

1.1 相关概念

欧拉回路:通过图中每条边恰好一次的回路

欧拉通路:通过图中每条边恰好一次的通路(注意通路无环)

**欧拉图:**具有欧拉回路的图

**半欧拉图:**具有欧拉通路但不具有欧拉回路的图

1.2 判别法(不做证明)

无向图:

  1. 存在欧拉通路的充要条件:
    1. 非零度顶点是连通的
    2. 恰有 2 个奇度顶点
  2. 存在欧拉回路的充要条件:
    1. 非零度顶点是连通的
    2. 顶点的度数都是偶数

有向图:

  1. 存在欧拉通路的充要条件:
    1. 非零度顶点是弱连通的
    2. 至多一个顶点的出度与入度之差为 1
    3. 至多一个顶点的入度与出度之差为 1
    4. 其他顶点的入度和出度相等
  2. 存在欧拉回路的充要条件:
    1. 非零度顶点是强连通的
    2. 每个顶点的入度和出度相等

1.3 Hierholzer算法

Hierholzer算法 也称逐步插入回路法,是一个非常简单且容易理解的算法。

算法流程

  • 根据无向图/有向图,要找的是欧拉通路/欧拉路径,选择起始结点u
  • 遍历 u 的出边 (u, v)
    • 删掉 (u, v)
    • 递归进 v,做同样操作
    • 回溯时,将边(u, v) 加入答案数组
  • 最终得到的ans 就是欧拉路径的逆序,因为我们是在回溯后才加边的,所以是逆序
  • 时间复杂度: O(M)

1.4 代码实现

1.4.1 邻接表存图

邻接表实现不容易写错, 而且对于某些恶心题目要求字典序输出我们可以直接排序

auto dfs = [&](auto&& self, int u) -> void {
    while (adj[u].size()) {
        int v = adj[u].back();
        adj[u].pop_back();
        self(self, v);
        ans.emplace_back(u, v);
    }
};
1.4.2 链式前向星存图

链式前向星主要防卡常, 但是逻辑没捋顺容易写挂.

链式前向星的删边操作就是标记数组 + 当前弧优化

// int head[N], idx;
// bool used[M];
// struct edge{
//     int v, nxt;
// } adj[M];

auto dfs = [&](auto&& self, int u) -> void {
    for (int& i = head[u]; ~i; ) {
        int j = (t == 1 ? i / 2 + 1 : i + 1);
        if (used[j]) {
            i = adj[i].nxt;
            continue;
        }
        int v = adj[i].v, id = (t == 1 && (i & 1)) ? -j : j;

        used[j] = true;
        i = adj[i].nxt;
        self(self, v);
        ans.push_back(id);
    }
};

二、OJ练习

2.1 模板1

原题链接

P7771 【模板】欧拉路径 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

思路分析

由于要字典序最小的方案,我们用邻接表存图

AC代码

#include <bits/stdc++.h>
#include <ranges>
#define sc scanf
// #define DEBUG
using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128;
using PII = std::pair<int, int>;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1e18 + 7;
constexpr int P = 1E9 + 7;
constexpr double eps = 1E-6;

void solve()
{
    int n, m;
    std::cin >> n >> m;
    std::vector<std::vector<int>> adj(n);
    std::vector<int> in(n), out(n);
    for (int i = 0, u, v; i < m; ++ i) {
        std::cin >> u >> v;
        -- u, -- v;
        adj[u].push_back(v);
        ++ out[u], ++ in[v];
    }
    int st = -1, ed = -1;

    for (int i = 0; i < n; ++ i) {
        if (out[i] - in[i] == 1) {
            if (~st) {
                std::cout << "No\n";
                return;
            }
            else
                st = i;
        }
        else if (in[i] - out[i] == 1) {
            if (~ed) {
                std::cout << "No\n";
                return;
            }
            else
                ed = i;
        }
        else if(in[i] != out[i]) {
            std::cout << "No\n";
            return ;
        }
        std::sort(adj[i].begin(), adj[i].end(), std::greater<int>());
    }

    if (st == -1) 
        st = 0;

    std::vector<PII> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        while (adj[u].size()) {
            int v = adj[u].back();
            adj[u].pop_back();
            self(self, v);
            ans.emplace_back(u, v);
        }
    };
    dfs(dfs, st);

    std::reverse(ans.begin(), ans.end());

    std::cout << ans[0].first + 1 << ' ';
    for (auto& [u, v] : ans)
        std::cout << v + 1 << ' ';
}

int main()
{
#ifdef DEBUG
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    std::ios::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);
    int _ = 1;
    // std::cin >> _;
    while (_--)
        solve();
    return 0;
}

2.2 模板2

原题链接

#10105. 「一本通 3.7 例 1」欧拉回路

思路分析

对于无向图, 这里边集数组下标从0开始, 所以对应原边编号是 i / 2 + 1, 根据奇偶决定是否乘-1

删边也是根据编号删除, 因为无向图的双向边走一个方向另一个方向就不能走了

AC代码

#include <bits/stdc++.h>
constexpr int N = 1E5 + 10, M = 4E5 + 10;

int head[N], idx;
int n, m, t;
int in[N], out[N];
bool used[M];
struct edge{
    int v, nxt;
} adj[M];

void addedge(int u, int v) {
    adj[idx] = { v, head[u] }, head[u] = idx ++;
}

auto init = []() {
    memset(head, -1, sizeof head);
    return 0;
}();

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
    std::cin >> t;
    std::cin >> n >> m;
    for (int i = 1, u, v; i <= m; ++ i) {
        std::cin >> u >> v;
        addedge(u, v);
        if (t == 1)
            addedge(v, u);
        ++ in[v], ++ out[u];
    }

    std::vector<int> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        for (int& i = head[u]; ~i; ) {
            int j = (t == 1 ? i / 2 + 1 : i + 1);
            if (used[j]) {
                i = adj[i].nxt;
                continue;
            }
            int v = adj[i].v, id = (t == 1 && (i & 1)) ? -j : j;

            used[j] = true;
            i = adj[i].nxt;
            self(self, v);
            ans.push_back(id);
        }
    };

    for (int i = 1; i <= n; ++ i) {
        if (t == 1) {
            if (in[i] + out[i] & 1) {
                std::cout << "NO\n";
                return 0;
            }
        }
        else {
            if (in[i] != out[i]) {
                std::cout << "NO\n";
                return 0;
            }
        }
    }

    if (idx)
        dfs(dfs, adj[idx - 1].v);

    if (ans.size() != m) {
        std::cout << "NO\n";
        return 0;
    }

    std::reverse(ans.begin(), ans.end());

    std::cout << "YES\n";
    for (int x : ans)
        std::cout << x << ' ';

    return 0;
}

2.3 重新安排行程

原题链接

332. 重新安排行程

思路分析

题目意思就是让求欧拉路径, 而且起点给了, 那也不用管什么通路/回路, 出入度了, 直接跑板子

记得对边进行排序

AC代码

class Solution {
public:
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        unordered_map<string, vector<string>> adj;
        for (auto& e : tickets)
            adj[e[0]].emplace_back(e[1]);
        for (auto& p : adj)
            sort(p.second.rbegin(), p.second.rend());
        vector<string> res;
        auto dfs = [&](auto&& self, const string& u) -> void {
            while (adj[u].size()) {
                string v = adj[u].back();
                adj[u].pop_back();
                self(self, v);
            }
            res.emplace_back(u);
        };
        dfs(dfs, "JFK");
        std::reverse(res.begin(), res.end());
        return res;
    }
};

2.4 合法重新排列数对

原题链接

2097. 合法重新排列数对

思路分析

又是板子题, 由于没说是通路还是回路, 所以我们先按无向图找通路起点, 找不到就说明是回路, 随便找个起点就行

AC代码

python3

class Solution:
    def validArrangement(self, pairs: List[List[int]]) -> List[List[int]]:
        g = defaultdict(list)
        ind, outd = Counter(), Counter()
        for x, y in pairs:
            g[x].append(y)
            ind[y] += 1
            outd[x] += 1
        st = pairs[0][0]
        for x, y in pairs:
            if outd[x] - ind[x] == 1:
                st = x
                break
        ret = []
        def dfs(x: int) -> None:
            while g[x]:
                y = g[x].pop()
                dfs(y)
                ret.append([x, y])
        dfs(st)
        return ret[::-1]

cpp

class Solution {
public:
    vector<vector<int>> validArrangement(vector<vector<int>>& pairs) {
        unordered_map<int, vector<int>> g;
        unordered_map<int, int> outd, ind;
        for(auto& e : pairs){
            int x = e[0], y = e[1];
            g[x].push_back(y);
            outd[x] ++, ind[y] ++;
        }
        int st = pairs[0][0];
        for(auto& e : pairs){
            int x = e[0], y = e[1];
            if(outd[x] == ind[x] + 1) {
                st = x;
                break;
            }
        }    
        vector<vector<int>> res;
        function<void(int)> dfs = [&](int x){
            while(g[x].size()){
                int y = g[x].back();
                g[x].pop_back();
                dfs(y);
                res.push_back({x, y});
            }
        };
        dfs(st);
        reverse(res.begin(), res.end());
        return res;
    }
};

2.5 破解保险箱

原题链接

753. 破解保险箱

思路分析

我们将 n - 1 位数 看为节点,则有 k n − 1 k^{n-1} kn1 个结点,每个结点有 k 个入边和出边

a 1 a 2 . . . a n − 1 a_1 a_2 ... a_{n-1} a1a2...an1 a 2 a 2 . . . a n − 1 x a_2 a_2 ... a_{n-1}x a2a2...an1x 这条边相当于 输入了数字x

每个节点加上一条出边就可以得到一个n位数,也就是说每个结点可以得到k个n位数, k n − 1 k^{n-1} kn1 个结点一共可以得到 k n k^{n} kn 个n位数,不重不漏

由于每个结点出度入度相等都为k,且强连通,于是图中存在欧拉回路,我们求欧拉回路即可得答案

实际中我们不需要建图,用哈希表标记结点即可

AC代码

class Solution {
public:
    string crackSafe(int n, int k) {
        unordered_set<int> st;
        string res;
        int base = pow(10, n - 1);
        auto dfs = [&](auto&& self, int u) -> void {
            for (int i = 0; i < k; ++ i) {
                int v = u * 10 + i;
                if (!st.count(v)) {
                    st.insert(v);
                    self(self, v % base);
                    res += '0' + i;
                }
            }
        };
        dfs(dfs, 0);
        return res += string(n - 1, '0');
    }
};

2.6 骑马修栅栏

原题链接

洛谷 P2731 骑马修栅栏

思路分析

题意比较直白,就是求欧拉路径,套板子即可

由于没给点数,而数据量较小且要求字典序,于是使用邻接矩阵存图

AC代码

#include <bits/stdc++.h>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;

constexpr int N = 500;

void solve() {
    int m;
    std::cin >> m;
    std::unordered_map<int, std::unordered_map<int, int>> adj;
    std::unordered_map<int, int> d;
    for (int i = 0, u, v; i < m; ++ i) {
        std::cin >> u >> v;
        ++ adj[u][v];
        ++ adj[v][u];
        ++ d[u], ++ d[v];
    }

    int st = 0;
    for (int u = 1; u <= N; ++ u) {
        if (!st && d.count(u))
            st = u;
        if (d[u] & 1) {
            st = u;
            break;
        }
    }

    std::vector<int> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        for (int v = 1; v <= 500; ++ v)
            if (adj[u][v]) {
                -- adj[u][v];
                -- adj[v][u];
                self(self, v);
            }
        ans.push_back(u);
    };

    dfs(dfs, st);
    std::reverse(ans.begin(), ans.end());
    for (int x : ans) std::cout << x << '\n';
}

auto init_ = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}

2.7 Domino

原题链接

SGU 101 Domino

思路分析

乍一看让找哈密顿路径,要是存在的话还行,我们通常用状压dp解决,但是不存在的话就麻烦了。

我们继续观察,发现我们把数字当作结点,每块骨牌当作边,问题就转化成了一个有n条边的图,我们要让每条边出现一次

这就变成了欧拉路径问题了

本题时间限制卡在0.25 second,但是点也就7个,边也就200条,还是跑得飞快的

注意无向图存在欧拉通路和欧拉回路的条件

AC代码

#include <bits/stdc++.h>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;

const int N = 7, M = 210;
int head[N], idx;
struct edge {
    int v, nxt, id;
} adj[M];

void addedge(int u, int v, int id) {
    adj[idx] = { v, head[u], id }, head[u] = idx ++;
}

int d[N];
bool used[M];

auto clear = []{
    memset(head, -1, sizeof head);
    // memset(used, 0, sizeof used);
    // memset(d, 0, sizeof d);
    // idx = 0;
    return 0;
}();


void solve() {
    int n;
    std::cin >> n;

    for (int i = 1, u, v; i <= n; ++ i) {
        std::cin >> u >> v;
        addedge(u, v, i), addedge(v, u, -i);
        ++ d[u], ++ d[v];
    }

    int st = -1, c = 0;

    for (int i = 0; i < N; ++ i) {
        if (d[i] & 1)
            st = i, ++ c;
        if (st == -1 && d[i])
            st = i;
    }

    if (c != 2 && c != 0) {
        std::cout << "No solution";
        return;
    }
    
    std::vector<std::pair<int, char>> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        for (int& i = head[u]; ~i; ) {
            int v = adj[i].v, id = adj[i].id;
            i = adj[i].nxt;
            if (used[abs(id)]) {
                continue;
            }

            used[abs(id)] = true;
            self(self, v);

            ans.emplace_back(abs(id), id > 0 ? '+' : '-');
        }
    };

    dfs(dfs, st);

    if (ans.size() != n) {
        std::cout << "No solution";
        return;
    }

    std::reverse(ans.begin(), ans.end());

    for (auto& [id, c] : ans)
        std::cout << id << ' ' << c << '\n';
    
}

auto init_ = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}

2.7 词链

原题链接

洛谷 P1127 词链

思路分析

如果将单词看作点,则会是一个哈密顿路径问题

如果我们把单词看作边,就是一个欧拉回路问题

我们将单词看作边,开头字母结尾字母看作点

那么就会得到26个点,n条边的有向图

我们求欧拉路径(通路或回路)即可

AC代码

#include <bits/stdc++.h>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;

void solve() {
    int n;
    std::cin >> n;
    std::vector<std::string> words(n);
    std::vector<std::vector<std::pair<int, int>>> adj(26);
    std::vector<int> in(26), out(26);
    for (int i = 0; i < n; ++ i) {
        std::cin >> words[i];
        adj[words[i][0] - 'a'].emplace_back(i, words[i].back() - 'a');
        ++ out[words[i][0] - 'a'], ++ in[words[i].back() - 'a'];
    }

    int st = -1, c0 = 0, c1 = 0;
    for (int i = 0; i < 26; ++ i) {
        if (out[i] - in[i] == 1) {
            st = i;
            ++ c0;
        }
        if (in[i] - out[i] == 1) {
            ++ c1;
        }
        if (st == -1 && out[i])
            st = i;
    }


    if (c0 > 1 || c1 > 1) {
        std::cout << "***";
        return;
    }

    for (auto& e : adj)
        std::sort(e.rbegin(), e.rend(), [&](auto& x, auto& y) {
            return words[x.first] < words[y.first];
        });

    std::vector<int> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        while (adj[u].size()) {
            auto [e, v] = adj[u].back();
            adj[u].pop_back();
            self(self, v);
            ans.push_back(e);
        }
    };

    dfs(dfs, st);

    if (ans.size() != n) {
        std::cout << "***";
        return;
    }

    std::reverse(ans.begin(), ans.end());

    for (int i = 0; i < n; ++ i) {
        std::cout << words[ans[i]] << ".\n"[i == n - 1];
    }

}

auto init_ = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}

2.8 瑞瑞的木棍

原题链接

洛谷 P1333 瑞瑞的木棍

思路分析

只需要判断是否存在欧拉通路/回路即可

即度数判断+并查集判断连通性

AC代码

#include <bits/stdc++.h>
// #include <ranges>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr double eps = 1e-9;

std::unordered_map<std::string, std::string> p;

std::string find(const std::string& a) {
    return p[a] == a ? a : p[a] = find(p[a]);
}

void merge(const std::string& a, const std::string& b) {
    auto pa = find(a), pb = find(b);
    if (pa == pb) return;
    p[pb] = pa;
}

void solve() {
    std::unordered_map<std::string, int> deg;
    std::string u, v;
    while (std::cin >> u >> v) {
        ++ deg[u], ++ deg[v];
        
        if (!p.count(u))
            p.insert({u, u});
        if (!p.count(v))
            p.insert({v, v});

        merge(u, v);
    }
    int c = 0;
    for (auto& [u, d] : deg) {
        c += d & 1;
    }

    if (!deg.size()) {
        std::cout << "Possible";
        return;
    }

    if (c > 2) {
        std::cout << "Impossible";
        return;
    }

    auto root = p.begin() -> second;

    for (auto& [s, fa] : p) {
        if (fa != root) {
            std::cout << "Impossible";
            return;
        }
    }

    std::cout << "Possible";
}

auto FIO = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}

2.9 无序字母对

原题链接

洛谷 P1341 无序字母对

思路分析

一个字母对就是一条边,跑板子。

注意字典序最小,我们要对邻接表排序,且选择最小起点。

AC代码

#include <bits/stdc++.h>
// #include <ranges>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr double eps = 1e-9;

void solve() {
    int n;
    std::cin >> n;
    std::unordered_map<char, std::vector<std::pair<char, int>>> adj;
    std::unordered_map<char, int> deg;
    for (int i = 0; i < n; ++ i) {
        std::string s;
        std::cin >> s;
        ++ deg[s[0]], ++ deg[s[1]];
        adj[s[0]].push_back({ s[1], i + 1} );
        adj[s[1]].push_back({ s[0], -i - 1} );
    }

    int c = 0;
    char st = adj.begin() -> first;
    bool f = false;
    for (auto& [ch, d] : deg) {
        c += d & 1;
        if (d & 1) {
            if (!f)
                st = ch;
            else
                st = std::min(st, ch);
            f = true;
        }
        else if(!f)
            st = std::min(st, ch);
    }

    if (c > 2) {
        std::cout << "No Solution";
        return;
    }

    for (auto& [u, e] : adj)
        std::sort(e.rbegin(), e.rend());


    std::string res;
    std::vector<bool> used(n + 1);
    auto dfs = [&](auto&& self, char u) -> void {
        while (adj[u].size()) {
            auto [v, id] = adj[u].back();
            adj[u].pop_back();
            if (used[abs(id)]) continue;
            used[abs(id)] = true;
            self(self, v);
        }
        res += u;
    };

    dfs(dfs, st);

    std::reverse(res.begin(), res.end());
    std::cout << res;
}

auto FIO = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}

2.10 Watchcow S

原题链接

[洛谷 P6066 USACO05JAN]Watchcow S

思路分析

和无向图欧拉回路不同的是,该题要求所得的回路要经过每条边正向反向各一次

这就更简单了,我们把无向图欧拉回路板子中的used[]数组删掉就行了

这样求出来的欧拉回路会把正向边反向边都走一遍

注意起点是1

AC代码

#include <bits/stdc++.h>
// #include <ranges>
// #define DEBUG
using i64 = long long;
using u32 = unsigned;
using u64 = unsigned long long;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr double eps = 1e-9;

void solve() {
    int n, m;
    std::cin >> n >> m;
    std::vector<std::vector<int>> adj(n);
    for (int i = 0, a, b; i < m; ++ i) {
        std::cin >> a >> b;
        -- a, -- b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }

    std::vector<int> ans;

    auto dfs = [&](auto&& self, int u) -> void {
        while (adj[u].size()) {
            int v = adj[u].back();
            adj[u].pop_back();
            self(self, v);
        }
        ans.push_back(u);
    };

    dfs(dfs, 0);

    for (int x : ans) std::cout << x + 1 << '\n';
}

auto FIO = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
} ();

int main() {
    #ifdef DEBUG
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif     

    int t = 1;
    // std::cin >> t;
    while (t --)
        solve();

    return 0;
}
  • 45
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值