三大变换与自控(六)傅立叶变换的性质,平移,对称,卷积等

本文探讨了傅立叶变换的性质,包括时域平移和对称性,说明如何利用这些性质简化复杂函数的傅立叶变换计算。此外,介绍了卷积的概念,它是分析系统和模拟输出的重要工具,可以通过乘以函数的傅立叶变换并逆变换来实现。文章强调了这些理论在实际问题解决中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面的文章中我们推导出了傅立叶变换的公式,但是显然在实际应用中,这样的计算过程依旧是非常复杂的。

是否存在一些方法可以让计算变得简单一些呢?

答案是肯定的,这篇文章将探讨傅立叶变换的一些性质,从一些简单的函数的ft来推导出复杂函数的ft。

首先,先来看最简单的时域上的平移。

如果一个函数在时域上发生了平移,那么它的ft会有什么改变吗?

在这里插入图片描述
证明过程很简单,我们只需要使用换元法代入公式再整理一下就可以了:
在这里插入图片描述
把t=u+T代入,变成对u的积分:
在这里插入图片描述
最后发现,时域上向右平移T对ft的影响只是乘e^-(jwT)。

除了平移之外,还有时域上的对称。如果函数相对于y轴对称,ft会有什么影响?
在这里插入图片描述
我们用同样的办法代入公式整理:
在这里插入图片描述
这里我们也是换元,最后整理一下正负号,得出结论:
在这里插入图片描述

看到这里可能有小伙伴要问了,这有什么用呢?
这当然很有用了。

举个简单的例子:
在这里插入图片描述
左上角的函数求ft很简单,但是右上角的就很难了。但是只需要我们把左上角的函数进行对称,平移,再和原来的相加,就可以直接得到右上角的函数图像了。

通过我们之前推导的ft性质,可以轻松得到右上角函数的ft。这就是开头说的,从简单函数推导出复杂函数的ft。

当然,这样的性质还有很多,推导的方法也很简单雷同,所以后面就不详细列出推导过程了,直接给出结论,感兴趣的小伙伴可以自行推导。
在这里插入图片描述
除了上面这些比较简单的性质外,还有一项稍微复杂一点,且非常重要的东西:convolution,也就是常说的卷积。

卷积是个很神奇的东西,它可以把任何一样东西变成另一样东西的形状。

我(好像?)在前面的文章提到过,把一个信号和一个系统的冲激响应进行卷积,就得到了这个信号进过系统后的样子。

翻译成人话,比如,把你的声音和浴室的冲激响应进行卷积,就可以得到你在浴室里说这段话的声音,不仅如此,我们还可以对操场,走廊等等任何系统做类似的操作。

所以,卷积把你的声音变成了浴室的形状。

比方说下面这两个函数:
在这里插入图片描述
这两个函数进行卷积后,蓝色的函数受到了紫色三角形函数的制约,变成了最后橙色图像的样子,是不是很神奇?

卷积不仅神奇,而且用处非常大,可以用来分析系统和模拟输出。

说了这么多,卷积的数学表达是什么呢?

很简单,就是把两个函数的ft相乘,再逆变换组成的全新函数,这个新函数就集合了两个函数的形状。

我们来推导一下:

在这里插入图片描述
推导过程要复杂一点,思路就是对两个函数的乘积进行ift,建议拿起纸笔跟着推导比较好理解。不想理解的也可以直接记结论。

当然,身为工科生,我们更加注重实际应用,而对具体原理有个大致的了解就可以了,因此这个系列的文章直接跳过dft和fft,尽早进入拉普拉斯变换,以及如何绘制伯德图,二阶系统的分析,设计滤波器等等实际应用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值