POJ 3292 Semi-prime H-numbers

题目大意

有如下几个定义:
H-numbers为4n+1(n属于自然数)
H-primes必为H-numbers,且H-primes只能分解为以下两个H-numbers的乘积1 * H-primes == H-primes
H-semi-primes是刚好两个H-primes的乘积,并且为H-numbers
给出n<=1000001,要你求出1~n中有多少H-semi-primes

解题思路

纯英语的题目很容易漏过细节。一开始我以为H-primes为质数且为H-numbers,所以做这道题时花了不少功夫。
其次是,我很容易把题目写的比标解更复杂,不管标解是简单的还是复杂的,要自己想想怎样才能更接近标解的思想。
另外,标程中筛H-semi-primes的方法我认为不是很严谨。也许是我还没有证明出来,呵呵~

Code

#include <iostream>

using namespace std;

const long long MAXN = 1000002;

long long f[MAXN];

int main()
{
	for (int i = 5; i < MAXN; i += 4)
	{
		for (int j = i; j < MAXN && (long long)i * (long long)j < MAXN; j += 4)
		{
			if (f[i] == 0 && f[j] == 0) f[i * j] = 1;
			else f[i * j] = -1;

		}
	}
	int cnt = 0;
	for (int i = 1; i < MAXN; i++)
	{
		if (f[i] == 1) cnt++;
		f[i] = cnt;
	}
	int n;
	while (cin >> n)
	{
		if (!n) return 0;
		cout << n << ' ' << f[n] << endl;
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值