Spark性能调优--

spark性能调优
数据倾斜调优

1.绝大多数task执行的都非常快,但是个别task执行极慢

2.原本能够正常执行的spark作业,突然某天出现oom(内存溢出)异常,观察异常栈,是我们写的业务代码造成的(情况少见)

数据倾斜发生的原理

在进行shuffle的时候,必须降各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。(运行时间符合木桶效应)

如何定位导致数据倾斜的代码

数据倾斜只会发生在shuffle中。常用可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateBykey、join、cogroup、repartition等。出现数据倾斜时,可能是代码中使用课这些算子中的某一个所导致

知道了数据倾斜发生在哪一个stage之后,接着就需要根据stage划分原理。推算出来发生倾斜的那个stage与代码的对应关系,需要对spark源码有深入的了解,介绍一个简单使用的推算方法:只要看到spark代码中出现了一个shuffle类算子或者是spark sql 的sql语句中出现了会导致shuffle的语句(比如group by 语句)。那么就可以判定,以那个地方为分界线划分出前后两个stage

某个task执行特别慢的情况

                 首先确定数据倾斜发生在第几个stage阶段

                 如果是使用yarn-client模式提交,那么本地就是直接可以看到log的,可以在log中找到当前运行到了第几个stage。此外,无论是使用yarn-client模式还是yarn-cluster模式。我们都可以在sparkj web ui上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜

某个task莫名其妙内存溢出的情况

                 此情况定位出问题的代码比较容易,查看yarn-client模式下的本地log的异常栈,或者通过yarn-cluster模式下的log中异常栈。一般来讲,通过异常栈信息就可以定位到代码中的那行代码发生了内存溢出。然后在那行代码附近,一般会有shuffle类算子,此时很有可能就是这个算子导致了数据倾斜。但是我们应该注意的是,不能单靠偶然的内存溢出判断发生了数据倾斜,因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出,因此还是需要通过spark web

ui查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否由于数据倾斜才导致了这次内存的溢出

查看导致数据倾斜的key的数据分布情况

知道了数据倾斜发生在哪里之后,通常需要分析一下那个执行了shuffle操作并且导致了数据倾斜的RDD/Hive表,查看一下其中key的分布情况。这主要是为之后的选择哪一种技术方案提供依据。针对不同的key分布与不同的shuffle算子组合起来的各种情况,可能需要选择不同的技术方案来解决

此时根据你执行操作的情况不同,可以有多种查看key分布的方式:

如果是spark sql 中的group by、join语句导致的数据倾斜,那么就查询一下sql中使用的表的key分布情况

如果是对spark rdd执行shuffle算子导致的数据倾斜,那么可以在spark作业中加入查看key分布的代码,比如rdd.countByKey()。然后对统计出来的各个key出现的次数。Collect/take到客户端打印一下

倾斜数据的解决方案

解决方案一:使用Hive ETC预处理数据

方案使用场景:导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀,而且业务场景需要频繁使用spark对hive表执行某个分析操作

方案实现是思路:此时可以评估一下,是否可以通过hive来进行数据预处理(即通过hive etc 预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在spark作业中针对数据源就不是原来的hive表了,而是预处理后的hive表。此时由于数据已经预先进行过聚合或join操作了,那么在spark作业中也就不需要使用原先的shuffle类算子执行这类操作

方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题。但是,这种方法属于治标不治本。因为数据本身就存在分布不均匀的问题,所以Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETC中,避免spark程序发生数据倾斜而已

方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,spark作业的性能会大幅度提高

方案缺点:治标不治本,Hive ETL中还是会发生数据倾斜

方案实践经验:在一些java系统与spark代码频繁调用spark作业的场景,而且对spark作业的执行性能要求非常高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive
ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用spark作业时,执行速度都会很快,鞥狗提供更好的用户体验

项目实际经验:在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java web 系统提交数据分析统计任务,后端通过Java提交spark作业进行数据分析统计。要求spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些spark作业的shuffle操作提前到了Hive ETL中,从而让spark直接使用预处理的Hive中间表,尽可能减少spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升6倍以上

解决方案二:过滤少数导致数据倾斜的key

方案使用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,适用此方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜

方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么我们就干脆直接过滤掉那少数几个key,比如,在spark sql中使用where子句过滤掉这些key或者在spark core中对rdd执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对rdd进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可

方案实现原理:将导致数据倾斜的key’给过滤掉之后,这些key 就不会参与计算,将不会产生数据倾斜

方案优点:实现简单,效果好,可以完全规避掉数据倾斜

方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是比较多的,并不是只有少数的几个

方案实践经验:在项目中,有一次发现某一天的spark作业运行的时候突然oom了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采用每次执行前先进行数据采样,计算出样本数据量最大的几个key之后,直接在程序中将那些key给过滤掉

解决方案三:提高shuffle操作的并行度

方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜的最简单的一种方案

方案实现思路:在对rdd执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于spark sql中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数就代表了shuffle read
task的并行度,该值默认值是200,对于很多场景来说都有点过于小

方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据,举例来说,比如原本有5个key,每个key对应10条数据,这5 个key都是分配一个task的,那么这个task就要处理50条数据。从而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么每个task执行的时间就变短了

方案优点:实现起来比较简单,可以有效减缓和减轻数据倾斜的影响

方案缺点:只是缓解了数据倾斜,未彻底根除问题,效果有限

方案实践经验:该方案无法彻底解决数据倾斜,因为如果一旦出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去使用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

解决方案四:两阶段聚合(局部聚合+全局聚合)

方案适用场景:对rdd执行reduceByKey等聚合类shuffle算子或者在spark sql中使用group by语句进行分组聚合时,比较适合这种方案

方案实现思路:此方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1)
(hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1)
(2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果就会变成(1_hello,2)(2_hello,2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以的到最终的聚合结果

方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以的到最终的结果

方案优点:对于聚合类的shuffl操作导致的倾斜,效果非常明显。通常都可以解决掉数据倾斜,或者说是大幅度缓解数据倾斜,将spark作业进行的性能提升数倍以上

方案缺点:仅仅适用聚合类的shuffle操作,适用范围相对较窄,如果是join类的shuffle操作,还的使用其他的解决方案

解决方案五:将reduce join 转化为map join

方案使用场景:在对rdd使用join类操作,或者是在spark sql中使用join语句时,而且join操作中的一个rdd或者表中的数据量比较小(比如说几百兆或者是一两g),比较适用此方案

方案实现思路:不适用join算子进行连接操作,而使用Broadcast类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现,将较小的rdd中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其中创建一个Broadcast变量:接着对另外一个rdd执行map类算子,在算子函数内,从Broadcast变量中获取较小的RDD的全量数据,与当前rdd的每一条数据按照连接key进行对比,如果连接key相同的话,那么就将两个rdd的数据用你需要的方式连接起来

方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个rdd是比较小的,则可以采用广播小rdd全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作

方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也根本就不会发生数据倾斜

方案缺点:使用场景较少,因为这中方案只适用一个大表和一个小表的情况。毕竟我们要将一个小表进行广播,此时就会消耗内存资源Driver和每一个Executor内存中都会驻留一份小rdd的全量数据。如果我们广播出去的rdd数据比较大,比如10G以上,那么就可能发生oom了。因此,并不适用两个都是大表的情况

解决方案六:采样倾斜key并分拆join操作

方案适用场景:两个rdd/hive表进行join的时候,如果数据量都比较大,无法采用“方案五”,那么,此时可以看一下两个rdd/hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个rdd/hive表中的少数几个key的数据量过大,而另一个rdd/hive表中的所有key都分布比较均匀,那么采用此解决方案

方案实现思路:对包含少数几个数据量过大的key的那个rdd,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出数据量最大的是哪几个key。然后将这几个key对应的数据从原来的rdd中拆分出来,形成一个单独的edd,并给每一个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个rdd。接着将需要join的另一个rdd,野过滤出来那几个倾斜key对应的数据并形成一个单的rdd,将每条数据膨胀形成n条数据,这n条数据都按顺序附加一个0-n的前缀,不会导致倾斜的大部分key也形成另外一个rdd。再将附加了随即前缀的独立的rdd与另一个膨胀n倍的独立rdd进行join,此时就可以将原来相同的key打散成n份,分散到多个task中进行join了。而另外两个普通的rdd就照常join即可。最后将两次join的结果适用union算子合并起来即可,就是最终的join结果

方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立rdd,并附家随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了

方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n被,不需要对全量数据进行扩容。避免占用了过多的内存

方案缺点:如果导致倾斜的key比较多的话,那么这种方式不适合

解决方案七:适用随机前缀和扩容rdd进行join

方案适用场景:如果在进行join操作时,rd中有大量的key导致数据侵倾斜,那么进行分拆key也没有什么意义,此时就只能使用最后一种方案来解决问题

方案实现思路:该方案的实行思路与“六”类似,首先查看rdd/hive表中的数据分布情况,找到那个造成数据倾斜的rdd/hive表,比如有多个key对应的数据都超过了万条。然后将该rdd的每条数据都打上一个n以内的随机前缀。同时对另一个正常的rdd进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0-n的前缀。最后将两个处理后的rdd进行join即可

方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“六”不同之处就在于,“六”是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程中需要扩容rdd,因此“六”扩容rdd后对内存的占用并不大:而这种是针对有大量的倾斜key进行数据扩容,对内存资源要求较高

方案优点:对jon类型的倾斜数据基本都可以处理,而且效果也相对比较显著,性能提升效果并不错

方案缺点:该方案更多的是环节数据倾斜,而不是彻底的避免数据倾斜。而且需要对整个rdd进行扩容,对内存资源要求比较高

方案实践经验:60分钟缩短到10分钟

解决方案八:多种方案组合使用

在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的一个就基本上能解决问题。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种的方案组合起来使用,比如说,我们针对出现多个数据倾斜环节的spark作业。可以先运用方案一和二,预处理一部分数据,并过滤一部分数据来缓解;其次可以对某些shuffle操作提升并行度,优化其性能;最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。灵活运用,实践解决问题

Shuffle调优

大多数spark作业的性能主要就是消耗了shuffle环节,因为该环节包含了大量的磁盘io、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就必须要对shuffle过程进行调优。但是必须知道,影响一个spark作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle调优只能在整个spark的性能调优占到一小部分而已。因此必须把握调优的基本原则

ShuffleManagter发展

在Spark的源码中,负责shuffle过程的执行、计算和处理的组件主要就是这里我们先明确一个假设前提:每个Executor只有1个CPU
core,也就是说,无论这个Executor上分配多少个task线程,同一时间都只能执行一个task线程。

我们先从shuffle
write开始说起。shuffle
write阶段,主要就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子(比如reduceByKey),而将每个 task处理的数据按key进行“分类”。所谓“分类”,就是对相同的key执行hash算法,从而将相同key都写入同一个磁盘文件中,而每一个磁盘文 件都只属于下游stage的一个task。在将数据写入磁盘之前,会先将数据写入内存缓冲中,当内存缓冲填满之后,才会溢写到磁盘文件中去。

那么每个执行shuffle
write的task,要为下一个stage创建多少个磁盘文件呢?很简单,下一个stage的task有多少个,当前stage的每个task就要创建 多少份磁盘文件。比如下一个stage总共有100个task,那么当前stage的每个task都要创建100份磁盘文件。如果当前stage有50个 task,总共有10个Executor,每个Executor执行5个Task,那么每个Executor上总共就要创建500个磁盘文件,所有 Executor上会创建5000个磁盘文件。由此可见,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的。

接着我们来说说shuffle
read。shuffle
read,通常就是一个stage刚开始时要做的事情。此时该stage的每一个task就需要将上一个stage的计算结果中的所有相同key,从各个 节点上通过网络都拉取到自己所在的节点上,然后进行key的聚合或连接等操作。由于shuffle write的过程中,task给下游stage的每个task都创建了一个磁盘文件,因此shuffle read的过程中,每个task只要从上游stage的所有task所在节点上,拉取属于自己的那一个磁盘文件即可。

shuffle read的拉取过程是一边拉取一边进行聚合的。每个shuffle read task都会有一个自己的buffer缓冲,每次都只能拉取与buffer缓冲相同大小的数据,然后通过内存中的一个Map进行聚合等操作。聚合完一批数 据后,再拉取下一批数据,并放到buffer缓冲中进行聚合操作。以此类推,直到最后将所有数据到拉取完,并得到最终的结果。

我们先从shuffle
write开始说起。shuffle
write阶段,主要就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子(比如reduceByKey),而将每个 task处理的数据按key进行“分类”。所谓“分类”,就是对相同的key执行hash算法,从而将相同key都写入同一个磁盘文件中,而每一个磁盘文 件都只属于下游stage的一个task。在将数据写入磁盘之前,会先将数据写入内存缓冲中,当内存缓冲填满之后,才会溢写到磁盘文件中去。

那么每个执行shuffle
write的task,要为下一个stage创建多少个磁盘文件呢?很简单,下一个stage的task有多少个,当前stage的每个task就要创建 多少份磁盘文件。比如下一个stage总共有100个task,那么当前stage的每个task都要创建100份磁盘文件。如果当前stage有50个 task,总共有10个Executor,每个Executor执行5个Task,那么每个Executor上总共就要创建500个磁盘文件,所有 Executor上会创建5000个磁盘文件。由此可见,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的。

接着我们来说说shuffle
read。shuffle
read,通常就是一个stage刚开始时要做的事情。此时该stage的每一个task就需要将上一个stage的计算结果中的所有相同key,从各个 节点上通过网络都拉取到自己所在的节点上,然后进行key的聚合或连接等操作。由于shuffle write的过程中,task给下游stage的每个task都创建了一个磁盘文件,因此shuffle read的过程中,每个task只要从上游stage的所有task所在节点上,拉取属于自己的那一个磁盘文件即可。

shuffle read的拉取过程是一边拉取一边进行聚合的。每个shuffle read task都会有一个自己的buffer缓冲,每次都只能拉取与buffer缓冲相同大小的数据,然后通过内存中的一个Map进行聚合等操作。聚合完一批数 据后,再拉取下一批数据,并放到buffer缓冲中进行聚合操作。以此类推,直到最后将所有数据到拉取完,并得到最终的结果。

优化后的HashShuffleManager

这里说的优化,是指我们可以设置一个参 数,spark.shuffle.consolidateFiles。该参数默认值为false,将其设置为true即可开启优化机制。通常来说,如果我 们使用HashShuffleManager,那么都建议开启这个选项。

开启consolidate机制之后,在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概念,每个 shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的task数量是相同的。一个Executor上有多少个CPU core,就可以并行执行多少个task。而第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件 内。

当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件。也就 是说,此时task会将数据写入已有的磁盘文件中,而不会写入新的磁盘文件中。因此,consolidate机制允许不同的task复用同一批磁盘文件, 这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升shuffle
write的性能。

假设第二个stage有100个task,第一个stage有50个task,总共还是有10个Executor,每个Executor执行5个 task。那么原本使用未经优化的HashShuffleManager时,每个Executor会产生500个磁盘文件,所有Executor会产生 5000个磁盘文件的。但是此时经过优化之后,每个Executor创建的磁盘文件的数量的计算公式为:CPU core的数量 * 下一个stage的task数量。也就是说,每个Executor此时只会创建100个磁盘文件,所有Executor只会创建1000个磁盘文件。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值