蓝桥杯习题集_ 算法训练 Torry的困惑(基本型)

该博客主要介绍了如何使用Eratosthenes筛选法求解质数问题,包括C++实现,并提到了在解决蓝桥杯习题集中的Torry's困惑问题时的技巧,如打表和高效计算模运算的方法。
摘要由CSDN通过智能技术生成

原文链接: 蓝桥杯习题集_ 算法训练 Torry的困惑(基本型)  

原文:

算法训练 Torry的困惑(基本型)  
时间限制:1.0s   内存限制:512.0MB
    
问题描述
  Torry从小喜爱数学。一天,老师告诉他,像2、3、5、7……这样的数叫做质数。Torry突然想到一个问题,前10、100、1000、10000……个质数的乘积是多少呢?他把这个问题告诉老师。老师愣住了,一时回答不出来。于是Torry求助于会编程的你,请你算出前n个质数的乘积。不过,考虑到你才接触编程不久,Torry只要你算出这个数模上50000的值。
输入格式
  仅包含一个正整数n,其中n<=100000。
输出格式
  输出一行,即前n个质数的乘积模50000的值。
样例输入
1


样例输出

2


原文分析:有几个技巧:

1.求质数采用 

求质数之Eratosthenes筛选法

时间复杂度是O(nloglogn),参考链接: 

求质数之Eratosthenes筛选法(C++版)

2.打表:把范围内的所有质数求出来存入到数组中

3. (A*B*C...*N)%MOL  可以 按照 ( (A%MOL)*(B%MOL)*(C%MOL)...*(N%MOL) )%MOL 计算

AC代码:

#include<iostream>
#include<cstring>
using namespace std;
const int maxn=10000;
bool arr[maxn];
int a[maxn];
int main()
{
	memset(arr,true,sizeof(arr));
	
	arr[1]=false;
	int i,j,n,count=0,c=1;

	cin>>n;
	
	for(i=2;i<=maxn;i++)
	{
		if(arr[i]==true)
		{
			for(j=i*i;j<=maxn;j+=i)
				arr[j]=false;
		}
	}
	
	for(i=2;i<=maxn;i++)
	{
		if(arr[i]==true)
		{
			a[count++]=i%50000;
		}
	}

	for(i=0;i<n;i++)
		c*=a[i];	
		
	cout<<c%50000;	

	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值