原文链接: 蓝桥杯习题集_ 算法训练 Torry的困惑(基本型)
原文:
算法训练 Torry的困惑(基本型)
时间限制:1.0s 内存限制:512.0MB
问题描述
Torry从小喜爱数学。一天,老师告诉他,像2、3、5、7……这样的数叫做质数。Torry突然想到一个问题,前10、100、1000、10000……个质数的乘积是多少呢?他把这个问题告诉老师。老师愣住了,一时回答不出来。于是Torry求助于会编程的你,请你算出前n个质数的乘积。不过,考虑到你才接触编程不久,Torry只要你算出这个数模上50000的值。
输入格式
仅包含一个正整数n,其中n<=100000。
输出格式
输出一行,即前n个质数的乘积模50000的值。
样例输入
1
样例输出
2
原文分析:有几个技巧:
1.求质数采用
求质数之Eratosthenes筛选法
时间复杂度是O(nloglogn),参考链接:求质数之Eratosthenes筛选法(C++版)
2.打表:把范围内的所有质数求出来存入到数组中
3. (A*B*C...*N)%MOL 可以 按照 ( (A%MOL)*(B%MOL)*(C%MOL)...*(N%MOL) )%MOL 计算
AC代码:
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=10000;
bool arr[maxn];
int a[maxn];
int main()
{
memset(arr,true,sizeof(arr));
arr[1]=false;
int i,j,n,count=0,c=1;
cin>>n;
for(i=2;i<=maxn;i++)
{
if(arr[i]==true)
{
for(j=i*i;j<=maxn;j+=i)
arr[j]=false;
}
}
for(i=2;i<=maxn;i++)
{
if(arr[i]==true)
{
a[count++]=i%50000;
}
}
for(i=0;i<n;i++)
c*=a[i];
cout<<c%50000;
return 0;
}