原文链接:hdu-1233-还是畅通工程
原文:
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 53016 Accepted Submission(s): 24061
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
原文分析:基本的求最小生成树,这里采用struskal算法。
AC代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=10000;
struct node
{
int start,end,value;
bool operator < (const node &n)const
{
return value<n.value;
}
}arr[maxn];
int n,m;
int fa[maxn];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int kruskal()
{
int i,count;
node e;
count=0;
for( i=1;i<=n;i++)
fa[i]=i;
for(i=0;i<m;i++)
{
int x=find(arr[i].start);
int y=find(arr[i].end);
if(x!=y)
{
fa[x]=y;
count+=arr[i].value;
}
}
return count;
}
int main()
{
int i,a,b,c;
while(cin>>n)
{
if(n==0)
break;
m=n*(n-1)/2;
for(i=0;i<m;i++)
{
cin>>a>>b>>c;
arr[i].start=a;
arr[i].end=b;
arr[i].value=c;
}
sort(arr,arr+m);
cout<< kruskal()<<endl;
}
return 0;
}