Time Limit : 4000/2000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 31 Accepted Submission(s) : 16
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3 5
Hint
Huge input, scanf is recommended.
Source
浙大计算机研究生复试上机考试-2006年
在这里用的是紫书上面的Kruskal算法模板(简洁……而且其中所涉及的间接排序函数)
#include<bits/stdc++.h>
using namespace std;
const int maxn=50*99+2;
int n,m,u[maxn],v[maxn],w[maxn],p[maxn],r[maxn];
bool cmp(const int i,const int j)//间接排序函数
{
return w[i]<w[j];//排序的关键字是对象的代号,而不是对象本身
}
int Find(int x)
{
while(x!=p[x]) x=p[x];
return x;
}
int Kruskal()
{
int ans=0;
for(int i=1;i<=n;i++) p[i]=i;//初始化并查集
for(int i=1;i<=m;i++) r[i]=i;//初始化序号
sort(r+1,r+m+1,cmp);//给边排序
for(int i=1;i<=m;i++)
{
int e=r[i];
int x=Find(u[e]),y=Find(v[e]);//找出当前边两个端点所在的集合编号
if(x!=y) ans+=w[e],p[x]=y;//如果在不同集合,合并
}
return ans;
}
int main()
{
while(scanf("%d",&n)==1&&n)
{
m=n*(n-1)/2;
for(int i=1;i<=m;i++) scanf("%d%d%d",&u[i],&v[i],&w[i]);
printf("%d\n",Kruskal());
}
return 0;
}