前言
学习数据挖掘,用于记录练习和回顾
一、什么是PCA?
经典主成分分析(Classical Principal Component Analysis)的核心思想:PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。
二、PCA算法流程
1.按列计算数据集X的均值Xmean,然后令Xnew=X−Xmean
2. 求解矩阵Xnew的协方差矩阵,并将其记为Cov
3.计算协方差矩阵Cov的特征值和相应的特征向量
4.将特征值按照从大到小的排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵Wnxk
5. 计算XnewW,即将数据集Xnew投影到选取的特征向量上,这样就得到了我们需要的已经降维的数据集XnewW
二、使用步骤
1.引入库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib.pyplot as plt
2.读入数据
代码如下(示例):
df_wine = pd.read_csv('./UCI/wine/wine.data', header=None) # 加载葡萄酒数据集
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values # 把分类属性与常规属性分开
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3, random_state=0) # 把整个数据集的70%分为训练集,30%为测试集
3.数据标准化(规范化)
如果数据特征在不同的范围上,要先对数据集标准化。下面3行代码把数据集标准化为均值0方差1,避免异常值对结果造成影响
sc = StandardScaler()
X_train_std = sc