宋浩老师《线性代数》笔记(第二章矩阵)(一)
目录
2.1 矩阵概念
1,实数矩阵和复数矩阵
2,行矩阵和列矩阵
3,注意数字0 和0矩阵的区别
4,负矩阵(矩阵前面添加负号)
5,行数等于列数的矩阵被称为方阵(方阵才有主对角线和次对角线)
注意:矩阵相同的前提是同型矩阵 (两个o矩阵不一定相同)
2.2 矩阵运算
1,加法和减法(对应相加减,同型矩阵才能相加)
2,数乘(一个数乘以矩阵 == 数和矩阵中每一个元素乘积)和行列式不同
3,乘法(宋氏七字)
乘法性质中不满足的定理
a,AB != BA,AB有意义,BA不一定有意义。如果AB=BA,则A,B是可交换的(A,B都是同阶的方阵)
b,AB = 0 不能推出A=0或者B=0
c,AB = AC,当A != 0时,不能推出B=C
满足的定理
a,任意矩阵和零矩阵相乘,都等于零矩阵
b,任何矩阵和单位矩阵相乘,都等于本身
运算规律
4,矩阵的幂运算(A的零次幂等于E)
注意:
常见例题讲解
5,矩阵的转置
2.3 特殊矩阵(方阵)
1,数量矩阵和对角性矩阵(区别是对角线上的值可以不同)
2,上三角形和下三角形矩阵
3,对称矩阵和反对称矩阵
对称矩阵的对角线的元素不一定
反对称矩阵主对角线为0
这里视频链接,大家可以配合食用。