(Graph Theory) Some Properties of Trees (with Proof)


This note briefly goes over a theorem that introduces some key properties of trees. This applies to any kind of trees.

Preliminary Definitions

  • A graph (or an undirected graph) G G G consists of a set V V V of vertices and a set E E E of edges such that each edge e ∈ E e \in E eE is associated with an unordered pair of vertices. If there is a unique edge e e e associated with the vertices v v v and w w w, we write e = ( v , w ) e = (v,w) e=(v,w) or e = ( w , v ) e = (w,v) e=(w,v). In this context, ( v , w ) (v,w) (v,w) denotes an edge between v v v and w w w in an undirected graph and not an ordered pair. If a graph has vertices V V V and edges E E E, we write G = ( V , E ) G=(V,E) G=(V,E).
  • A (free) tree T T T is a simple graph such that if v , w v,w v,w are vertices in T T T, then there is a unique path from v v v to w w w (i.e. between them).
  • Let v v v and w w w be vertices in a graph G G G.
    • A simple path from v v v to w w w is a path from v v v to w w w with no repeated vertices.
    • A cycle (or circuit) is a path of nonzero length from v v v to $v4 with no repeated edges. (An acyclic graph is a graph with no cycle).

Theorem

  • For a graph G G G a graph with n n n vertices, the following are equivalent:
    • ( 1 )   G (1)~G (1) G is a tree
    • ( 2 )   G (2)~G (2) G is connected and acyclic
    • ( 3 )   G (3)~G (3) G is connected with n − 1 n-1 n1 edges
    • ( 4 )   G (4)~G (4) G is acyclic with n − 1 n-1 n1 egdes

Proof

1    ⟹    2 1 \implies 2 12

  • By definition.

2    ⟹    3 2 \implies 3 23

  • Suppose G : = ( V , E ) G:=(V,E) G:=(V,E) is connected and acyclic, we want to show G G G has exactly n − 1 n-1 n1 edges.
  • Recall a cycle is defined as a path that has the same starting and ending vertex with no repeated edges. Thus, if we have a cycle, then for every vertex in that cycle, there has to be at least one vertex “going away” from the vertex and another distinct vertex that “goes back” to the vertex, which means the degree of every vertex in that cycle is at least 2 2 2.
  • As G G G is acyclic, there is no loop or parallel edges, so G G G is simple.
  • Proof by inducting on n n n.
    • Base Case: n = 1 n=1 n=1, G G G has one vertex and no edge, so the implication holds.
    • Inductive Hypothesis: for n = k , k ≥ 1 , k ∈ Z n=k,k≥1,k \in \Z n=k,k1,kZ, G G G with n n n vertices has n − 1 n-1 n1 edges.
    • Induction Step: assume n = k + 1 n=k+1 n=k+1. We have G G G a simple, connected, and acyclic graph with k + 1 k+1 k+1 vertices. We now want to show that there exists a vertex with a degree of 1 1 1. Suppose there is no such a vertex, then because the graph is connected, the degree of each vertex is at least 2 2 2. Since the graph is simple, each vertex is adjacent to at least two distinct vertices, which means you can enter each vertex in one way and leave it in another way, implying that if you start from a vertex, you can always go back via a path. This means the graph must contain a cycle, which is a contradiction. Therefore, the graph has a vertex with degree 1 1 1. We remove this vertex from the graph, and we get the k k k case, so using the inductive hypothesis, we get n − 1 n-1 n1 egdes, and adding the removed edge back, we get k = k + 1 − 1 k=k+1-1 k=k+11 egdes, which estabilishes the implication.

3    ⟹    4 3 \implies 4 34

  • Suppose G G G is a connected graph with n − 1 n-1 n1 edges, we want to show that it is acyclic.
  • Suppose G G G has one (and only one) cycle. Then we remove an edge from this cycle. By the important exercise, we get that the graph is still connected, but now with n − 2 n-2 n2 edges, and now it is acyclic.
  • Now we get a graph, say G ′ G' G, that is connected and acyclic. Since we have proved that 2    ⟹    3 2\implies 3 23, we know the graph G ′ G' G is connected and has exactly n − 1 n-1 n1 edges. However, we also get that G ′ G' G has exactly n − 2 n-2 n2 edges, so we get a contradiction, so the original graph G G G must be acyclic in the first place.

4    ⟹    1 4 \implies 1 41

  • Suppose G G G is an acyclic graph with n − 1 n-1 n1 edges, and we want to show that it is connected, so that it satisfies the definition of trees.
  • Suppose G G G is not connected, then we claim that it has two components. The proof of this claim is simple: suppose it has k , k > 1 k,k>1 k,k>1 components, and each component is thus connected and acyclic.
  • Suppose these components contain m 1 , . . . , m k m_1,...,m_k m1,...,mk vertices respectively, and these add up to n n n. We apply 2    ⟹    3 2\implies 3 23 on each of these components so that we know the component with m i m_i mi vertices contain m i − 1 m_i-1 mi1 edges.
  • On the one hand, the number of edges in all of these components should add up to n − 1 n-1 n1, but on the other hands, by 2    ⟹    3 2\implies 3 23, they add up to n − k n-k nk, and k > 1 k>1 k>1, so we get a contradiction. This means k ≤ 1 k≤1 k1 i.e. k = 1 k=1 k=1, meaning the graph is indeed connected.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值