【bzoj2756: [SCOI2012]奇怪的游戏】 二分+网络流判断

2756: [SCOI2012]奇怪的游戏

Time Limit: 40 Sec   Memory Limit: 128 MB
Submit: 4330   Solved: 1206
[ Submit][ Status][ Discuss]

Description

Blinker最近喜欢上一个奇怪的游戏。 
这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数。每次 Blinker 会选择两个相邻
的格子,并使这两个数都加上 1。 
现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同
一个数则输出-1。 

Input

输入的第一行是一个整数T,表示输入数据有T轮游戏组成。 
每轮游戏的第一行有两个整数N和M, 分别代表棋盘的行数和列数。 
接下来有N行,每行 M个数。 

Output


  对于每个游戏输出最少能使游戏结束的次数,如果永远不能变成同一个数则输出-1。

Sample Input

2
2 2
1 2
2 3
3 3
1 2 3
2 3 4
4 3 2

Sample Output

2
-1

HINT

【数据范围】 

    对于30%的数据,保证  T<=10,1<=N,M<=8 

对于100%的数据,保证  T<=10,1<=N,M<=40,所有数为正整数且小于1000000000 



对棋盘黑白染色,统计出黑色的个数和白色的个数分别为num1,num2,黑色格子的值的和为sum1,白色格子的值的和为sum2。最后棋盘所有的值都变成x。

每次操作都是一个白色格子加1,一个黑色格子加1,所以(sum1-sum2)==x*(num1-num2),即 x=(sum1-sum2)/(num1-num2);

当num1!=num2 时,x是确定的,判断此时能否成立便可。

当num1==num2时,可知,若x==x0时成立,x>x0必定成立(num1==num2,格子的个数是偶数个,都两两加1,若是最后的值可以成为x0,则也必定可以成为x0+1),则可以二分查找。

一个棋盘,当终止值为x时,如何判断是否能够成立:

两个相邻点都加1,相当于一个点向另一个点流一个单位的流量。我们假设所有的流量都是黑色点流向白色点的,那么我们建从源点向黑色点流(x-a[i][j])(x-该点自己的值)流量的边,从白色点流(x-a[i][j])(x-该点自己的值)流量的边到汇点,并且每个黑色点向周围的白色点流流量为(x-a[i][j])的边。判断从源点流出的所有流量都能流到汇点便可。



#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#define ll long long 
#define N 305
#define inf (ll)1e16
using namespace std;
int n,m,num1,num2,T,fir[N*N],d[N*N],vis[N*N],k,st,ed;
ll mx,sum1,sum2,A[N][N],b[N][N];
struct he{
	int r,nx;
	ll cap;
}a[N*N];

void add(int l,int r,ll c){
	a[k].r=r;a[k].cap=c;a[k].nx=fir[l];fir[l]=k++;
}
void insert(int l,int r,ll c){
	add(l,r,c);add(r,l,0);
}
int BFS(){
	memset(vis,0,sizeof(vis));
	queue<int> Q;
	while(!Q.empty()) Q.pop();
	Q.push(st);
	d[st]=0;vis[st]=1;
	while(!Q.empty()) {
		int cur=Q.front();Q.pop();
		if(cur==ed) break;
		for(int i=fir[cur];i!=-1;i=a[i].nx){
			int u=a[i].r;
			if(vis[u]||!a[i].cap) continue;
			vis[u]=1;
			d[u]=d[cur]+1;Q.push(u);
		}
	}
	return vis[ed];
}
ll DFS(int x,ll c){
	if(x==ed||c==0) return c;
	ll flow=0,f;
	for(int i=fir[x];i!=-1;i=a[i].nx){
		int u=a[i].r;
		if(d[u]==d[x]+1&&a[i].cap&&(f=DFS(u,min(c,a[i].cap)))){
			a[i].cap-=f;
			a[i^1].cap+=f;
			flow+=f;
			c-=f;
			if(c==0) break;
		}
	}
	if(!flow) d[x]=-1;
	return flow;
}
ll dinic(){
	ll flow=0;
	while(BFS()){
		ll u=DFS(st,inf);
		if(!u) break;
		flow+=u;
	}
	return flow;
}
void init1(){
	k=0;memset(fir,-1,sizeof(fir));
}
bool check(ll x){
	ll sum=0;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++){
			b[i][j]=x-A[i][j];
		}
	st=0;ed=n*m+2;
	init1();
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++){			
			if((i+j)%2==0){
				sum+=b[i][j];
				insert(st,(i-1)*m+j,b[i][j]);
				if(j!=m)insert((i-1)*m+j,(i-1)*m+j+1,b[i][j]);
				if(j!=1)insert((i-1)*m+j,(i-1)*m+j-1,b[i][j]);
				if(i!=n)insert((i-1)*m+j,i*m+j,b[i][j]);
				if(i!=1)insert((i-1)*m+j,(i-2)*m+j,b[i][j]);
			}else{
				insert((i-1)*m+j,ed,b[i][j]);
			}
		}
	ll tmp=dinic();
	if(tmp==sum) return 1;
	return 0;
}
void init(){
	mx=-inf;sum1=sum2=num1=num2=0;
}
int main(){
	freopen("1.in","r",stdin);
	freopen("1.out","w",stdout);
	scanf("%d",&T);
	while(T--){
		init();
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++){
				scanf("%d",&A[i][j]);
				mx=max(mx,A[i][j]);
				if(((i+j)&1)==0){
					sum1+=A[i][j];num1++;
				}else {sum2+=A[i][j];num2++;}
			}
		if(num1==num2){
			if(sum1!=sum2){
				printf("-1\n");
				continue;
			}
			ll l=mx,r=inf,mid;
			while(l<r){
				mid=(l+r)/2;
				if(check(mid)) r=mid;else l=mid+1;
			}
			printf("%lld\n",(r*n*m-sum1-sum2)/2);
		}else{
			ll x=(sum1-sum2)/(num1-num2);
			if(x<mx) printf("-1\n");
			else if(check(x)) printf("%lld\n",(x*n*m-sum1-sum2)/2);else printf("-1\n");
		}
	}
}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页