Tencent-ncnn在ubuntu16 cmake3.10.2上人脸检测编译测试

本文档详细介绍了如何在Ubuntu16上编译Tencent的ncnn开源框架,用于轻量级人脸检测模型的运行。首先,从GitHub下载并编译opencv2.4.13.6,解决版本不一致问题,然后编译ncnn库,最后成功生成可执行文件进行人脸检测测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超级轻量级模型-https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB,内部采用SSD、NCNN、MNN多种,pytorch多用方式对模型进行了测试和分析;

本文章是对腾讯的纯ncnn开源框架进行编译调试,用来跑轻量级模型的。

1.下载源码

https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/ncnn

进入ncnn目录,打开CMakeList.txt 文件 注释掉 add_subdirectory(examples)

cd ncnn
开始编译安装,会生成libncnn.a静态库,以及tools模型转换工具;
mkdir build && cd build
cmake ..
make -j
make install

由于利用ncnn图像检测,需要用到图像处理和转换,需要安装opencv;

由于ncnn只能用cv2,所以本人下载opencv2.4.13.6版本。

https://github.com/opencv/opencv/tree/2.4.13.6

编译之前&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值